
Dead Person Switches - with or without trust

Lewis Westbury

Kellogg College

University of Oxford

Abstract
More commonly known as a Dead Man’s Switch, a Dead Person Switch (DPS) is a system that
can hold a secret on behalf of a person, and govern its release should they become unavailable.

Little formal work exists on this topic. A similar topic, time-release cryptography, is an active
field of research and has several contributions that can be applied when considering a DPS.

A number of use cases exist for a DPS. This thesis focuses on the needs of an investigative
journalist. The implementation is divided into three core sections:

1. Development of requirements
2. Evaluation of existing systems and components
3. Proposal and evaluation of new designs

Through desk research, study, and survey this thesis derives the following requirements for a
DPS: Confidentiality, Awareness, Timing, Resilience, Affordability, Durability, Explainability, and
Visibility.

Several existing solutions are evaluated against these requirements. Each has strengths and
weaknesses, but none are shown to be appropriate for the chosen use case, or able to meet all
requirements.

Several components that could meet the requirements of a DPS are discussed, and three designs
are proposed and evaluated against the requirements:

1. A classic micro-services architecture
2. A distributed application (dApp) built with a smart contract and secret contract
3. An application of witness encryption

These represent distinct approaches to the design of a DPS, and are shown to meet more of
the requirements. This thesis concludes that the dApp design is the strongest offering that
can currently be implemented. The witness encryption design presents a strong hypothetical
alternative, but requires further research.

Acknowledgements
First, I would like to thank everybody who took the time to contribute to this thesis by
participating in the survey, and to the kindness of the volunteers at Bureau Local for permitting
me to share information about it with your community.

Thanks to all my lecturers and classmates for being so generous with your knowledge and
perspectives; to Anjuli Shere and Ivo Maffei for taking the time to talk to me about your brilliant
research; to Ed Saperia, Dean of the London College of Political Technology, for helping to chart
the wide range of communities of practise that exist in the field of investigative journalism; and to
Professor John Barnden and Dr Huma Shah for sharing insights into their work and the Loebner
Prize events.

Special thanks go to Dr Christopher Hargreaves for your patient and thoughtful supervision.

Finally, thanks go to my friends and family, whose encouragement, patience, and proof reading
has finally been rewarded. I have completed something.

Contents
1 Introduction 5

2 Background 6
2.1 Use cases . 6

2.1.1 Whistleblower protection . 6
2.1.2 Inactive Accounts . 7
2.1.3 Final wishes . 7
2.1.4 Organisational continuity . 7

3 Related work 8
3.1 Hosted consumer DPS implementations . 8
3.2 Distributed Applications (dApps) . 8
3.3 Open source projects . 8
3.4 A taxonomy of threats to journalists . 8
3.5 Summary of existing related work . 9
3.6 Article: Decentralizing a Dead Man’s Switch . 9
3.7 Article: Time-lock encryption . 10
3.8 Article: 15 Men on a Dead Man’s Switch . 10

4 Methodology 12
4.1 Objective . 12
4.2 Scope . 12

4.2.1 Situations out of scope . 12
4.3 Stage 1: Gathering requirements . 13

4.3.1 Survey . 13
4.3.2 Synthesis . 14
4.3.3 Threat modelling . 14
4.3.4 Risk analysis foundations . 15

4.4 Stage 2: Review of existing systems and components . 15
4.5 Stage 3: Propose and evaluate designs . 16

4.5.1 Risk analysis process . 17

5 Implementation - Stage 1: Gathering requirements 18
5.1 Survey . 18

5.1.1 Insights . 18
5.1.2 Failure states . 20
5.1.3 Summary . 20

5.2 Synthesised requirements for a DPS . 21
5.3 Threat analysis . 22

5.3.1 Stakeholders . 22
5.3.2 Components . 22
5.3.3 High level data flow diagram . 23
5.3.4 STRIDE-per-element threat analysis . 23

5.4 Risk analysis foundation . 24
5.4.1 Informational assets . 24
5.4.2 Known threat actors . 25
5.4.3 Impact to informational assets . 26

6 Implementation - Stage 2: Review of existing systems 28
6.1 Hosted consumer applications . 28

6.1.1 Properties of consumer applications . 29
6.1.2 Hosted DPS 1: Dead Man’s Switch . 29
6.1.3 Hosted DPS 2: Dead Man . 31
6.1.4 Hosted DPS 3: Dead Man Tracker . 34
6.1.5 Hosted DPS 4: Letters Cloud . 36
6.1.6 Comparisons . 38
6.1.7 Summary . 39

1

6.2 Distributed Apps (dApps) . 39
6.2.1 Properties of dApps . 39
6.2.2 dApp 1: KillCord . 40
6.2.3 dApp 2: Kimono . 41
6.2.4 Summary . 43

6.3 Open source solutions . 44
6.3.1 Properties of open source solutions . 44
6.3.2 Evaluations . 44

6.4 Scoring . 45

7 Implementation - Stage 2: Review of components 47
7.1 Trust networks . 47

7.1.1 Shamir’s Secret Sharing Scheme . 47
7.1.2 Choosing participants . 48

7.2 Aliveness checks . 50
7.2.1 Classic authentication . 50
7.2.2 Biometrics . 50
7.2.3 Human judgement . 51
7.2.4 Paralysis proofs . 51
7.2.5 Inactive account managers . 52
7.2.6 Evidence . 53
7.2.7 Data protection regulations . 53

7.3 Confidential computation . 53
7.3.1 Trusted Computing . 54
7.3.2 Trusted Platform Module (TPM) . 54
7.3.3 Trusted Execution Environment (TEE) . 54
7.3.4 Homomorphic encryption . 55
7.3.5 Source code protection . 55

7.4 Guaranteed execution . 55
7.4.1 Hardened devices . 55
7.4.2 Distributed computing . 56
7.4.3 Durability . 57

7.5 Publishing mediums . 58
7.5.1 Public forums . 59
7.5.2 Direct communication . 59
7.5.3 Trusted channels . 59
7.5.4 Distributed File Systems . 60

8 Implementation - Stage 3: Propose and evaluate designs 61
8.1 Design 1: Hosted micro-service DPS . 61

8.1.1 Premise . 61
8.1.2 Design . 62
8.1.3 Risk analysis . 63
8.1.4 Evaluation against requirements . 71

8.2 Design 2: dApp with managed secrets . 73
8.2.1 Premise . 73
8.2.2 Research and components . 73
8.2.3 Design . 74
8.2.4 Evaluation against requirements . 77
8.2.5 Further considerations . 78

8.3 Design 3: Witness encryption . 79
8.3.1 Premise . 79
8.3.2 Research and components . 79
8.3.3 Design . 80
8.3.4 Evaluation against requirements . 81
8.3.5 Further considerations . 82

8.4 Scoring . 82
8.4.1 Conclusion . 84

2

9 Evaluation 85
9.1 Development of requirements . 85
9.2 Assessment of existing solutions and related components 86
9.3 Proposal and evaluation of designs . 86
9.4 Breadth vs. depth . 87
9.5 Ethical risk . 87

10 Conclusions 88
10.1 Recommendations for future work . 88

10.1.1 Collaborative research . 88
10.1.2 Alignment with research . 88
10.1.3 Alternative design proposals . 88
10.1.4 Visibility . 89
10.1.5 Ethics and abuse . 89
10.1.6 Extended scope . 89
10.1.7 Build and test . 89

10.2 Final summary . 89

Bibliography 91

List of Tables
1 Appendices . 5
2 Hosted consumer DPS implementations . 8
3 Distributed application (dApp) DPS implementations . 8
4 STRIDE-per-element threat classes, reproduced from Shostack [29] 14
5 Freely available threat modelling tools . 15
6 Answers regarding trust of DPS operators . 18
7 Survey answers regarding use of a DPS system . 19
8 Survey answers regarding deterrent effect of secrets . 19
9 Failure states for a DPS . 20
11 Reasoned user stories, mapped to requirements . 21
12 User stories inferred from the survey, mapped to requirements 21
13 Requirements for a DPS . 21
14 Stakeholders in a DPS system . 22
15 High level components in a generic DPS . 23
16 Areas of significant vulnerability, generic DPS components 24
17 Spoofing attacks on the subject and aliveness checker . 24
18 Informational assets in a DPS . 25
19 Known threat actors . 25
20 Impact to informational assets . 26
21 Existing systems reviewed . 28
22 DPS requirements reproduced . 28
23 Hosted DPS systems evaluated . 28
24 Hosted solution summary: Dead Man’s Switch . 29
25 Requirements vs Dead Man’s Switch (hosted DPS 1) . 31
26 Hosted solution summary: Dead Man . 31
27 Requirements vs Dead Man (hosted DPS 2) . 33
28 Hosted solution summary: Dead Man Tracker . 34
29 Requirements vs Dead Man Tracker (hosted DPS 3) . 36
30 Hosted solution summary: Letters Cloud . 36
31 Requirements vs Letters Cloud (hosted DPS 4) . 38
32 dApps evaluated . 39
33 dApp 1 summary: KillCord . 40
34 Requirements vs KillCord (dApp 1) . 40
35 dApp 2 summary: Kimono . 41
36 Requirements vs Kimono (dApp 2) . 42
37 dApp approaches to manage the subject secret . 43

3

38 Open source DPS projects evaluated . 44
39 Scoring criteria for evaluated DPS solutions . 45
40 Supporting research for DPS capabilities . 47
41 Polynomial degrees . 47
42 Failure states for a K of N system . 48
43 Proposed design summaries . 61
44 Additional assets and impact for a micro-services design 63
45 Vulnerability types for a micro-services design . 64
46 Threats for a micro-services design . 65
47 Risks for a micro-services design . 68
48 Scoring criteria for evaluated DPS solutions, reproduced 82
49 Implementation stages for evaluation . 85

List of Figures
1 The 2016 WikiLeaks insurance files tweet [10] . 6
2 Survey appeal graphic . 14
3 Risk analysis combination tables . 17
4 Survey respondent progress . 18
5 Components and roles for a DPS . 22
6 Generic DPS data flow diagram, modelled in Threat Dragon 23
7 Hosted DPS 1: Dead Man’s Switch (deadmansswitch.net) 30
8 Hosted DPS 2: Dead Man (deadman.io) . 32
9 Dead Man service (hosted DPS 2) blocked . 33
10 Hosted DPS 3: Dead Man Tracker (deadmantracker.com) 35
11 Hosted DPS 4: Letters Cloud (letters.cloud) . 37
12 KillCord relational diagram, reproduced from github.com/nomasters/killcord 42
13 Scoring matrix for existing DPS solutions . 45
14 Alice forms an indirect functional trust opinion of Eric . 49
15 xkcd: security [36] . 50
16 Paralysis proof: t2 relies on UTXO0 & UTXO1 . 52
17 Hardware and operating system layers in an Intel CPU, reproduced from Grawrock [46] . 54
18 Hardware and operating system layers including SGX, reproduced from Grawrock [46] . . 55
19 Design proposal: micro-services architecture . 62
20 Risk level and priority combination tables . 68
21 Design proposal 2: dApp creation flow . 74
22 Design proposal 2: dApp check-in flow . 74
23 Design proposal 2: dApp activation flow . 75
24 Scoring matrix for proposed and existing DPS solutions 83

4

1 Introduction
More commonly known as a Dead Man’s Switch, a Dead Person Switch (DPS) is a system that can hold
a secret on behalf of a person, and govern its release should they become unavailable.

Use cases for such a system include final messages to loved ones, the distribution of assets after death,
and the controlled release of a damaging secret to disincentivise an attack on the owner of a DPS (the
subject). These are discussed in section 2.

This capability is of interest because it apparently contradicts a simple mental model of encryption:

• Simple encryption: A secret is encrypted with an encryption key, and the subject must provide
the decryption key to restore the plaintext of the secret.

• DPS: Assuming the secret is encrypted, a DPS must be able to decrypt and release it in the absence
of the subject.

It is not immediately obvious how the decryption key can be kept confidential but also made available to
decrypt the secret when the user is not present.

This thesis contributes a set of requirements for a Dead Person Switch, a review of existing systems that
purport to offer this capability, and several evaluated designs for a potential DPS.

In doing so, it addresses the following questions:

• What are the guarantees that a DPS system should provide to its users?
• How well do existing solutions deliver these requirements?
• Which existing information security tools could contribute to a working DPS?
• Which approaches could deliver working designs, and how well do those designs meet the require-

ments?

The remainder of this thesis is structured as follows:

• Background - Describing the user needs that DPS systems seek to solve.
• Related work - Exploring existing research and systems related to the field.
• Methodology - Structure and methods for the work conducted as the implementation of this

thesis.
• Implementation - Split into 3 sections:

– establishing a set of requirements for a DPS,
– a review of existing systems and components, and
– proposal of new designs that could meet requirements.

• Evaluation - Reflection on this thesis and methodology.
• Conclusions - Proposals for further research, and summary of findings.

A number of appendices are included which provide additional detail in support of this work:

Table 1: Appendices

Appendix Description Citations

A Survey participant documents, for section 5.1.
B Threat Dragon model for a generic DPS, for section 5.3.
C Evaluation of existing solution tables, for section 6.
D Subjective logic - further detail, for section 7.1.2.2 [1] [2]
E Paralysis proofs - further detail, for section 7.2.4 [3]
F Trusted computing - further detail, for section 7.3.1. [4] [5] [6] [7] [8]
G Design and risk assessment tables, for section 8.1.3.

5

2 Background
The need for a DPS is seen in many walks of life. A number of use cases are presented below, each
prefixed with an illustrative user story.

2.1 Use cases
2.1.1 Whistleblower protection

As a whistleblower, I want to have a secret released on my death, so that I can disincentivise
attacks on me.

A whistleblower or investigative journalist (the subject), may grant control of the release of their secret
to a DPS (the switch). The switch will then attempt to monitor the well-being of the subject. If they
are unavailable for a determined period of time, it will release the secret. Provided the secret chosen
is sufficiently damaging to the expected attacker (the threat), it can serve as a disincentive to physical
attack.

In A critical analysis of whistleblower protection in the European Union [9], Popescu notes that “employees
who reveal inside information are vulnerable to retaliation,” and “without protection from retaliation,
many would-be ‘whistleblowers’ will remain silent.” Written in 2015, the paper notes that at that time
only 4 EU members have legal protection frameworks for whistleblowers and their families. (Others were
in the process of implementing one, or hadn’t started yet.)

2.1.1.1 WikiLeaks insurance files In an attempt to protect their capability, WikiLeaks (an
organisation devoted to publishing leaked data), published an 88Gb encrypted file and publicised it with
the tweet illustrated in fig 1.

Figure 1: The 2016 WikiLeaks insurance files tweet [10]

Possible uses for this secret include:

• A disincentive for attacks on their members (ie. the data might be decrypted if members are
attacked).

• Organisational continuity (ie. allowing the continued release of information even if members are
attacked) - so making an attack futile.

2.1.1.2 Edward Snowden’s DMS In May 2013, Edward Snowden leaked thousands of US intelligence
documents before fleeing the country. He shared the documents with a couple of journalists, who were
tasked with responsibly sorting and releasing evidence of wrongdoing. As reported in Wired that year
[11], he also shared an encrypted copy of the entire cache with a number of people to act as a Dead Man’s
Switch:

6

“Snowden also reportedly passed encrypted copies of his cache to a number of third parties
who have a non-journalistic mission: If Snowden should suffer a mysterious, fatal accident,
these parties will find themselves in possession of the decryption key, and they can publish
the documents to the world.”

Edward clearly perceived a risk to his own well-being, and recognised the potential of secrets he had
obtained to disincentivise an attack on him.

2.1.2 Inactive Accounts

As a user of a digital service, I want to pass control of my account to chosen people in the
event of my death, so that they can administer my account appropriately.

Popular online service providers, such as Google [12], and GitHub [13], are increasingly responsible for
the administration of accounts belonging to people who have died. These services have policies and
techniques for passing control of those accounts to chosen colleagues, relatives or friends - and have
developed techniques to resist attempts to fraudulently declare a person alive or dead.

2.1.3 Final wishes

As a mortal, I want to control the distribution of my assets after I die, so that my final
wishes are enacted.

Writing a will allows people to control the distribution of their assets after death. Which? Magazine
notes that in 2018, 54% of UK adults did not have a will [14], risking loss of control of their assets.

This is a function that a DPS may fulfil. In Fifteen Men on a Dead Man’s Switch [15], 2015, Lopp
describes a process designed to meet that use case by storing and releasing a secret to a group of relatives
or friends after death. This is explored in section 3.8.

Switches that operate in the realm of cryptocurrencies may also be able to distribute wealth automatically
when triggered. Charitable giving is a special case of this, differing only in the chosen recipient.

2.1.4 Organisational continuity

As a member of staff at an organisation, I want to share the secrets I use to administer that
organisation with chosen colleagues after my death, so that they may continue to administer
the organisation.

This use case is illustrated by the case of the Ivar Aasen Centre of Language and Culture, Norway. In
2002, the organisation posted an appeal: One of their archivists had passed away, taking with him the
only password to a database of 11,000 titles. The password was recovered, however, in short order: The
Slashdot community found it in just a few days [16].

This use case illustrates the importance of organisations developing access management policies that
prevent unexpected deaths or staff leaving from locking vital resources. A Dead Person Switch is one way
to achieve this, although not necessarily the most appropriate solution.

7

3 Related work
A number of components and solutions that claim to offer some of the properties of a Dead Person Switch
are available either as consumer offerings, distributed apps (dApps), or open source projects. These
solutions offer different sets of guarantees, and some come with disclaimers as to their suitability per use
case. They are assessed in detail in section 6.

Academic research into DPS solutions is sparse, although many of the components that could contribute
to a solution are well documented, or active areas of research. This thesis analyses relevant components,
in the context of their application to a DPS, in section 7.

3.1 Hosted consumer DPS implementations
A number of systems exist today which purport to meet some the requirements of a Dead Person Switch.
Each offer different capabilities, making claims about their ability to protect and distribute secrets.

Table 2: Hosted consumer DPS implementations

Product Summary

deadmansswitch.net A system designed to meet end of life needs - such as messages for loved ones. It
checks for signs of life, and if not met, sends a number of emails to chosen
recipients.

deadman.io A system that checks for a response, and distributes documents by email if it does
not receive that response.

deadmantracker.com A service that automatically contacts your friends and/or family in the event that
something happens to you.

Letters Cloud A service that allows you to create messages to be sent, should you stop visiting
your trigger link. (formerly komprom.at)

These implementations are presented and analysed in detail in section 6.1.

3.2 Distributed Applications (dApps)
Distributed Applications (dApps) are built to be run as one or more smart contracts, evaluated as a
part of the blockchain for a cryptocurrency. dApps are, by nature, open source or represented by open
protocols, and so there is a lot more information with which to reason about their capabilities.

Table 3: Distributed application (dApp) DPS implementations

System Service description

KillCord A tool to build resilient dead man’s switches for releasing encrypted payloads.
Kimono A digital time capsule built on the Ethereum blockchain.

These systems are presented and analysed in section 6.2.

3.3 Open source projects
A number of open source projects purport to meet some of the needs of users of a DPS, ranging from
student or hackathon projects through to research based initiatives. These solutions often require that
the user also find a solution to host and operate their system, and this can alter their security properties.

Open source solutions are evaluated in section 6.3.

3.4 A taxonomy of threats to journalists
At time of publishing, an authoritative taxonomy of threats to journalists is not yet available1. This
thesis presents a simple risk model in the context of a DPS which lists relevant threat actors, and will
return to the topic of threats to journalists in discussion of potential future work.

1The researcher is aware of current work to develop such a resource, as yet unpublished.

8

https://www.deadmansswitch.net
http://www.deadman.io/
https://www.deadmantracker.com/
https://letters.cloud/
https://killcord.io/
https://github.com/hillstreetlabs/kimono

3.5 Summary of existing related work
There are a number of papers, techniques and tools for components relevant to the design and implemen-
tation of a DPS, discussed in detail in section 7.

Trust networks are discussed in section 7.1:

• K of N threshold schemes
• Shamir’s Secret Sharing Scheme [17]
• Subjective logic [1] [2]

Aliveness checking is discussed in section 7.2:

• Classic authentication
• Biometrics
• Human judgement
• Paralysis proofs [3]
• Inactive account managers [12] [18]
• Validation of evidence [19]
• General Data Protection Regulations [20]

Confidential computation is discussed in section 7.3:

• Trusted Computing (TPMs, TEEs) [4] [5] [6] [7]
• Homomorphic encryption [21]

Guaranteed execution is discussed in section 7.4:

• Device hardening [22] [23]
• Distributed computing, science, smart contracts [24] [25]
• Durability

Publishing mediums are discussed in section 7.5:

• Public forums
• Trusted channels
• Distributed file systems

These cover components that can contribute to the design and build of a DPS. The following sections
describe a number of works that relate more directly to Dead Person Switches.

3.6 Article: Decentralizing a Dead Man’s Switch
The article Tell No Tales? Decentralizing a Dead Man’s Switch [26] by Ainsley Sutherland, deserves
special mention. This is an analysis of Dead Person Switches through the lens of a distributed confidential
computing solution called SECRET (formerly ENIGMA), that could potentially meet several of the
requirements of a DPS.

Exploring KillCord, an existing open source solution, Ainsley identifies the various properties of the
system and also the missing component: the actual secret encrypted and distributed through IPFS2.
The decryption key is held by a trusted third party, the “publisher.” As a distributed app, KillCord
can provide guaranteed execution, and a highly available aliveness check, but relies on that publisher to
manage the secret itself.

Ainsley also explores Kimono, a solution which allows a user to divide secret information (for instance,
a secret’s decryption key) between a number of trusted third-parties, provides a countdown for those
parties, and manages a financial incentive for them to retain their secret until the countdown completes
through a smart contract. Ainsley and the Kimono team note that a system like this is vulnerable to
collusion attacks (where these parties can cause early or late release of the information, provided they are
willing to forgo the incentive).

Additionally, this solution must necessarily make assumptions about the resilience of these trusted parties
against attack, persuasion or blackmail. If an attack on such a system can identify all the parties involved,

2InterPlanetary File System (IPFS) is discussed in section 7.5.4.

9

their capability to offer a more substantial reward could compromise the reliability of the group. This
thesis presents reasoning about trust networks, such as this, in section 7.1.

Ainsley goes on to describe the unique component that the SECRET network offers: secret contracts.
The security properties of the SECRET network allow a contract to exist and execute with guarantees
about confidentiality that aren’t traditionally available to smart contracts.

The paper proposes a “starting example” flow for a DPS built with a secret contract on the SECRET
network, and a smart contract on the Ethereum blockchain. It is intended to stimulate conversation and
feedback on a possible design for a DPS.

3.7 Article: Time-lock encryption
Time-lock encryption is a term for the group of techniques that permit control of the time at which a
secret may be decrypted. There is significant overlap with the requirements of a DPS:

• Time-lock encryption allows the owner of the secret to determine when a secret may be decrypted,
by control of the effort required to decrypt it. It is often described as “sending a message into the
future.”

• A DPS has a similar requirement, but must also permit the chosen time of decryption to vary -
allowing recovery the plaintext secret should the owner be determined unavailable.

The article Time-lock encryption [27], written and updated by Gwern Branwen between 2011 and 2019,
also deserves special mention. Branwen presents a history of time-lock encryption methods, and a
thorough literature review of existing techniques.

This article serves as a comprehensive and useful starting point for further research, and features a
number of techniques relevant to the design and build of a DPS, including:

• Witness encryption
• Bitcoin as a clock
• Distributed secret sharing with smart contracts

Distributed secret sharing by smart contract is a feature of Kimono, an existing solution, assessed in
section 6.2.3.

The possible application of witness encryption and bitcoin as a clock are discussed in section 8.3 - a
proposed design for a DPS that applies witness encryption.

3.8 Article: 15 Men on a Dead Man’s Switch
In his 2018 article 15 Men on a Dead Man’s Switch [15], Jameson Lopp describes a process to prepare a
secret that can be unlocked by a number of cooperative, trusted persons after a person’s death.

This particular article is of note because it offers a practical implementation, including instructions for
creating a data store on a physically isolated device that is encrypted with a secret.

It also illustrates a common mechanism found across several other designs: The fragmentation and
distribution of a secret across a group of N participants using Shamir’s Secret Sharing Scheme, a K of N
threshold scheme described in section 7.1.1.

This solution is reasonably robust - it deals with the use case for passing on a legacy after death, permitting
K of N participants to reconstruct the secret and, in the presence of the original laptop’s store, decrypt
a set of files (containing the user’s legacy). It does have some limitations though:

• Jameson assumes that sufficient trusted parties will behave as expected, and that it will be difficult to
compromise them. In a situation where the agents are family, this may be a reasonable assumption.
However, if the assets being shared are sufficiently large, motives to misbehave may appear - which
could lead to participants collaborating to cause an early release.

• The laptop described in Jameson’s solution is a single point of failure. If it is destroyed (perhaps
through malice or environmental factors leading to hardware failure) or if it is stolen, the secrets
are lost.

10

• As described earlier, if families are in contact through remote means, it may be possible to fake the
well-being of a subject by falsifying their presence on a call. This would effect a denial of service
attack that could cause the participants to delay decryption of the secrets.

“I can understand perfectly how the report of my illness got about, I have even heard on good
authority that I was dead.”

Mark Twain, 1897

This use case likely assumes regular contact between family, and so it might be difficult to cause an early
release by convincing participants that their relative has passed when they have not. Aliveness checks
and the quality of human judgement are discussed in section 7.2.3.

11

4 Methodology
4.1 Objective
The objective for this thesis is to contribute evaluated designs for a number of possible implementations
for a Dead Person Switch.

To do this, the implementation divides into several key sections:

1. Gather requirements for a DPS system.
2. Evaluate existing systems and components that relate to DPS capabilities.
3. Propose and evaluate designs for DPS systems that can meet established requirements.

4.2 Scope
A number of potential use cases exist for a system like a DPS, as described in the Background. They
group reasonably well into the following categories:

1. Whistleblower / investigative journalist
2. Last wishes / charitable giving
3. Organisational continuity

These use cases are significantly different, have different actors, and different security properties.

This thesis focuses on the investigative journalism use case. This use case has a few well-defined
actors:

• Subject - the owner of a DPS, either an investigative journalist, or whistleblower (their source).
• Threat - an organisation or person that poses a physical risk to the subject.

In this scenario, the subject holds a secret, and so is able to use its potential for release as leverage to
disincentivise a physical attack by the threat.

There are a number of benefits to limiting the scope of the thesis to this use case:

• This is a well-defined problem with clear and motivated threats.
• Those threats are motivated and resourced - so allowing solutions that meet the criteria for this

scenario to meet the needs of the other use cases, too.
• Investigative journalists are expected to be familiar with some information security concepts, and

are considered more likely than others to have experienced threats to their safety.

The alternative scenarios (last wishes / charitable giving, and organisational continuity) are out of scope
for this thesis:

• These scenarios don’t define a motivated, well-resourced threat.
• A number of solutions for these use cases already exist3.

4.2.1 Situations out of scope

More complex situations within the investigative journalism scenario, eg. those with 2 or more threats,
are out of scope for this thesis. In these cases, complex interactions become possible. Decisions about
how to group secrets in a DPS or the nuances by which they operate become more important.

For instance, suppose a subject owns two switches, corresponding to each potential threat. If the subject
is attacked, further work would be required to determine how should each switch could assess whether it
should activate.

Similarly, if a user has a single DPS containing all the secrets about all the threats, and is attacked -
multiple threats are now affected. It might be possible to assume that with multiple threats a user’s
safety is reduced - but if they should become aware of each other4 and the risk to their own secret that
the other threats could pose, they may be incentivised to protect the user, or sabotage each other.

3Examples of solutions to help with last wishes include WeCroak: http://www.kkitcreations.com/wecroak-android-
faq/, afternote: https://www.afternote.com/, BeRemembered: https://beremembered.com/, My Wonderful Life:
https://www.mywonderfullife.com/

4In this scenario, the subject has notified each threat of the existence of their DPS, assuming they have a deterrent effect.

12

These uncertainties have the potential to quickly multiply the complexity of any solution. This thesis will
return to them in discussion of potential future work.

4.3 Stage 1: Gathering requirements
As mentioned above, the implementation of this thesis is divided into 3 stages:

• Gathering requirements
• Review of existing systems
• Proposal and evaluation of new designs

The first of these stages is to develop a set of requirements for a DPS, identifying the needs of its users,
understanding the threat landscape, and laying the foundations for risk analysis of existing and proposed
solutions. As mentioned in section 3, no formal work exists that already does this. This is implemented
in section 5.

4.3.1 Survey

Whilst it is possible to reason about these requirements from first principles, little is known about the
needs of investigative journalists in relation to technologies such as a DPS. For that reason, this thesis
incorporates a survey targeted towards investigative journalists.

Survey questions are intended to elicit the following information:

• Experience of threats to personal safety of journalists and their sources.
• Knowledge of DPS and DPS-like services that currently exist.
• How a journalist might choose to trust the operator of a DPS service.
• How journalists perceive the impact of losing CIA5 properties for a DPS.

The survey takes the form of an online form, allowing users to participate anonymously, remotely, and
without appointment.

Ethical approval to conduct the survey was sought and granted6 through the Central University Research
Ethics Committee7 (CUREC) at the University of Oxford.

The researcher completed a number of modules from Research Integrity, provided as a self-learning
resource by the University of Oxford Learning Facility8.

The University of Oxford pre-approve 2 services, considered adequately secure, to host surveys:

• Microsoft Forms
• Jisc Online Surveys

The researcher attended Surveys: Introduction to Jisc Online Surveys and Microsoft Forms, from the
University of Oxford IT Learning Centre9.

The survey’s consent form and main content were combined into a single survey hosted on Jisc, and
subsequently advertised through various means:

• Open journalism communities, eg. Bureau Local10.
• Twitter posts11 with request for retweets and shares by popular investigative journalism accounts,

including the graphic reproduced as Figure 2.
• A personal blog post12 by the researcher.

The participant information sheet and schedule of questions is included as Appendix A.
5CIA properties: Confidentiality, Integrity, Availability
6Approval number: CS_C1A_21_011_01
7Central University Research Ethics Committee: https://researchsupport.admin.ox.ac.uk/governance/ethics#/
8Research Integrity course content, see: https://weblearn.ox.ac.uk/access/content/group/e0915ead-90fc-4c6b-a041-

d43a7f491ade/2020/index.html
9Certificate of attendance available on request. NB. “This certificate does not imply any specific competence”

10Bureau Local: https://www.thebureauinvestigates.com/local
11Appeal through Twitter: https://twitter.com/instantiator/status/1395852175746686977?s=20
12Researcher’s blog post: https://instantiator.dev/post/dead-mans-switches-appeal/

13

Figure 2: Survey appeal graphic

4.3.2 Synthesis

The resulting responses are reviewed qualitatively and combined with reasoning about the use case to
develop a set of requirements for a DPS.

These outputs are used to guide evaluation of existing systems in section 6, and design proposals in
section ??.

4.3.3 Threat modelling

A high level threat model is presented using STRIDE-per-element, a technique developed at Microsoft [28].
This method is selected as the framework permits an analysis of components at any level of abstraction,
and provides a set of threat classes that can be quickly applied to each element of a solution. It is also
supported by freely available software.

STRIDE is a mnemonic: Each letter of STRIDE represents a different class of threat. The following table
is a replication of the STRIDE chart, published by Adam Shostack in 2007 [29], which serves as a tool to
understand each possible type of threat in this model:

Table 4: STRIDE-per-element threat classes, reproduced from Shostack
[29]

Property Threat Definition Generic example

Authentication Spoofing Impersonating
something or
someone else.

Pretending to be any of billg,
microsoft.com or ntdll.dll

Integrity Tampering Modifying data or
code

Modifying a DLL on disk or DVD, or a
packet as it traverses the LAN.

Non-repudiation Repudiation Claiming to have not
performed an action.

“I didn’t send that email,” “I didn’t
modify that file,” “I certainly didn’t visit
that web site, dear!”

14

Property Threat Definition Generic example

Confidentiality Information
Disclosure

Exposing
information to
someone not
authorized to see it

Allowing someone to read the Windows
source code; publishing a list of
customers to a web site.

Availability Denial of Service Deny or degrade
service to users

Crashing Windows or a web site, sending
a packet and absorbing seconds of CPU
time, or routing packets into a black hole.

Authorization Elevation of
Privilege

Gain capabilities
without proper
authorization

Allowing a remote internet user to run
commands is the classic example, but
going from a limited user to admin is also
EoP.

There are two freely available tools to assist building a data flow diagram and annotating it with STRIDE
threats.

Table 5: Freely available threat modelling tools

Tool Comparison

Microsoft Threat Modeller
(MTM)

MTM is a closed-source tool, which aims to deliver a lot of threat analysis
automatically. It does this with a rich database of components that you might add
to your design.

OWASP Threat Dragon Threat Dragon is an open source tool (still in development). It provides a much
simpler model - and generates prompts for threats according to the STRIDE
model, rather than attempting to fill them all in. As described by Mike Goodwin
in 2020 [30], it is designed to encourage users to think about the threats.

This thesis presents a high level threat report using Threat Dragon, as it permits generic components
rather than specifics.

4.3.4 Risk analysis foundations

A risk model for a given DPS depends on its specific implementation. However, it is possible to reason
about a number of properties upfront. For instance, the threats can be inferred based on our understanding
of the scenario, and it is possible to discuss the impact of exploitation affecting the various informational
assets. This section presents tables to represent:

• Informational assets in a generic DPS
• Threats to informational assets in a DPS
• Impact of compromise for information assets in a DPS

4.4 Stage 2: Review of existing systems and components
The second stage toward the objective of this thesis is a review of existing systems and components.

• Existing systems are reviewed in section 6.
• Components are discussed in section 7.

A number of systems exist that purport to meet the requirements of a DPS. In order to establish
where opportunities exist for new designs, section 6 presents and evaluates those systems against the
requirements developed for a DPS.

A search conducted with relevant terms through Google and GitHub, and combined with references
uncovered through research, gives a set of systems. This is further filtered by relevance to the topic of
this thesis.

Existing systems can be categorised as:

• hosted consumer systems,
• distributed applications (dApps), or
• open source solutions.

15

Where possible13, an analysis of the limitations and vulnerabilities in each system14 is conducted to help
determine which have the potential to be developed further, and which fall short of the requirements.
These analyses are presented, and summarised.

Section 7 presents a review of components and techniques with application to the following capabilities:

• Trust networks
• Aliveness checks (and proxies for aliveness)
• Confidential computation
• Guaranteed computation
• Publishing mediums

Each capability lends itself to one or more of the requirements of a DPS derived in section 5.2, and
contributes to the design of a reliable DPS.

4.5 Stage 3: Propose and evaluate designs
The third stage of this thesis is the proposal and evaluation of designs for a DPS that can meet the
requirements derived in section 5.2, and that are not currently available through existing systems reviewed
in section 6. This is implemented in section 8.

Proposals are chosen and developed to represent distinct strategies. Each design incorporates existing
information security research and components, which are presented and explained to support the reasoning
behind the design.

Sources for components and research are sought through a combination of:

• Study - Components covered in the Software and Systems Security taught MSc are selected for
relevance.

• Search - Related terms are used to uncover further work using tools such SOLO15, and Google
Scholar.

• Word of mouth - The search is widened by reaching out to researchers and practitioners.

Each component, technique, or paper is evaluated in the context of its application to an aspect of a
working DPS.

A number of designs are proposed. For each design:

• The premise is explained.
• Relevant information security research and components are presented.
• The design is described.
• Diagrams are presented to aid visualisation.

The first design, proposed in section 8.1, serves to illustrate a base case using a classic micro-services
architecture. A full risk analysis is conducted, highlighting strengths and weaknesses in the design. This
serves as a point of reference.

The designs described in sections 8.2 and 8.3 describe a distributed application, and an application of
witness encryption (respectively). Both rely on the existence of one or more blockchains, comprised of
nodes without constraints on hardware or operating system, and multiple versions and implementations
of client software, which rapidly complicate a risk analysis. The boundaries of these systems encompass
complex networks, and so a risk analysis of this magnitude is expected to exceed the limitations of an
MSc thesis.

For these reasons, more pragmatic approaches to analysis are adopted. Each design is evaluated against
the requirements for a DPS:

• Findings for each requirement are presented.
• Potential mitigations for found risks are offered.
• Further considerations are discussed.

13Some closed-source systems deliberately obfuscate their code and mechanism.
14Either exploring the code provided, or by reviewing the system’s available documentation.
15Search Oxford Libraries Online - an index with access to all digitised documents held by libraries across the University

of Oxford.

16

Finally, the proposed designs are compared to discuss strengths and weaknesses in the context of all
proposed systems.

4.5.1 Risk analysis process

A qualitative method for risk analysis, scoring values as Low, Medium and High, is best suited to this
thesis. This permits evaluation of the relative importance of risks without needing to know the costs or
frequencies involved to a high degree of precision.

A threat’s likelihood of success is calculated as a combination of a vulnerability level, and threat
capability. This, in turn, is used to calculate the threat level in combination with frequency of attempts
made by a given threat. Finally, the risk level itself is calculated from the threat level combined with
the impact if it compromises an asset, as shown in figure 3.

Figure 3: Risk analysis combination tables

• Likelihood of success = Vulnerability level x Capability
• Threat level = Likelihood of success x Frequency of attempts
• Risk level = Threat level x Impact valuation

These tables are unbiased - showing a balanced rule for combining these estimates. (Although the
prioritisation table, far right, slightly favours impact over threat level.)

In the context of an organisation, they would be designed with the business and biased towards business
priorities.

The result of this analysis is then used to select responses to each threat. A number of controls are
presented for each threat.

17

5 Implementation - Stage 1: Gathering requirements
This section presents insights from the survey conducted, and combines them with reasoning to determine
a number of requirements for a DPS. A data flow diagram and STRIDE-per-element threat analysis are
used to evaluate a number of possible attacks against a DPS. Finally, stakeholders, assets, and threats
are inferred and presented as the basis for a risk analysis in section 8.

5.1 Survey
As described in section 4.3.1, the survey presented here contains answers provided by investigative
journalists, and seeks their opinions about if and how they would trust a DPS with their secret.

The participant information sheet and schedule of questions is included as Appendix A.

The survey is qualitative, seeking inputs that can help to describe user needs and inform reasoning about
the use cases for a DPS.

5.1.1 Insights

As shown in figure 4, 68 participants viewed the opening description of the survey, and a further 5
undertook to complete the survey.

Figure 4: Survey respondent progress

A possible inference is that, despite precautions16, many potential participants were also unable to trust
the survey process itself to protect their anonymity.

5.1.1.1 Trusting an operator Results from the survey indicated that selecting and trusting an
operator for a DPS is challenging for investigative journalists, with high standards to meet.

Such an operator will need to work hard to earn their trust. Answers ranged through requirements for
transparency of motive, building an interpersonal relationship, and the security protocols and mitigations
put in place to protect the system.

Table 6: Answers regarding trust of DPS operators

Q: How would you decide whether to trust the operator of a DPS?

“Transparency of funding, motives, background, and encryption”
“By meeting them in person if possible at least twice.”
“Word of mouth/personal experiences with him”
“They would have to use the same security protocols as used by UK Police Forces and Interpol”

This caution is corroborated by advice found in A Journalist’s Resource for Safe and Ethical Reporting,
Chapter 4: Digital Safety [23], from the RSF - which offers advice for choice of digital communication
tools.

A choice to make use of a DPS may rely on the ability to show why a subject should trust the service to
keep their secrets reliably, or how they can trust the motives of the system’s operator. This informs a
property of a DPS: It should be possible for the target subject to understand and trust the system.

This is included as the explainability requirement in section 5.2.
16Precautions include: Ethical review from the University of Oxford, careful explanation of the anonymity protections

provided, and choice of survey tool approved by the University of Oxford.

18

5.1.1.2 Systems already in use Participants in the survey indicated overwhelmingly that they do
not use any existing DPS systems.

Table 7: Survey answers regarding use of a DPS system

Question Yes No

Have you ever employed a DPS or similar system? 20% (1) 80% (4)
(If no.) Do you consider that you might if the need arose?) 50% (1) 50% (1)

This, combined with their answers to subsequent questions about how they might establish trust in a
system, suggests that either:

1. investigative journalists do not perceive a need for such a system (perhaps because they do not
believe that release of a particular secret is sufficient disincentive against attack), or

2. they do not trust any existing systems to provide the required resilience.

Both possibilities are plausible. The second is corroborated by a number of answers about the resilience
of Dead Person Switches.

5.1.1.3 Resilience The survey asked participants about the assurances they would need to know
that a DPS was resilient against a number of different types of attack:

• Physical or digital assaults to make it unavailable
• Physical or digital assaults to retrieve its stored secrets or alter its behaviour
• Bribery or incentives to retrieve its secrets or alter its behaviour

In each case, answers varied - with many suggesting that it is impossible to build a fully resilient system:

“both are always susceptible”

“That’s unlikely to be possible. It would always be a huge risk.”

“probably an impossible risk to take”

A few options were suggested by survey participants:

“Written assurances”

“A trusted programmer, perhaps.”

“Unlikely that either will be foolproof, ideally a decentralised system is much safer imo”

The application of decentralised systems to this problem is explored in section 6.2 (distributed apps).

This supports the resilience requirement in section 5.2.

5.1.1.4 Deterrent effect Some threats to journalists are found to be extremely resilient against
informational threats. Answers from the survey suggest that investigative journalists do not believe a
DPS can serve as sufficient deterrent to an attack.

Table 8: Survey answers regarding deterrent effect of secrets

Question Yes No

In your professional opinion, can secrets obtained through
whistle-blowing or other investigative means serve as a deterrent against
reprisals?

0% (0) 100% (5)

For example, despite a UN finding that “the Kingdom of Saudi Arabia is responsible” for the “extrajudicial
killing” of journalist Jamal Khashoggi, and that there is “ ‘credible evidence’ to warrant an investigation
into Prince Mohammed,” Saudi Prince Mohammed bin Salman has successfully avoided investigation,
trial or consequences [31].

19

This position contrasts with evidence that Wikileaks and Edward Snowden have both employed the threat
of release of secret information as an “insurance” against attack - showing their belief that it could serve
as an effective deterrent.

However powerful the deterrent effect is, this does inform a property of a DPS: It should be possible for a
DPS to indicate that it is working and could release a secret, to support any deterrent effect.

This is included as the visibility requirement in section 5.2.

5.1.1.5 Cost One respondent indicated that the resilience required for a safe DPS would raise the
cost beyond practical means:

“I don’t think the concept of a DPS is viable for many reasons. . . it would be a resource too
expensive to use.”

This informs an additional property of a DPS: It should be affordable for the target subject to establish
and operate a DPS without compromising its security properties. This is included as the affordability
requirement in section 5.2.

5.1.2 Failure states

There are two main ways a DPS can fail, although a number of different threats may have different
motives for attempting to cause these failures:

Table 9: Failure states for a DPS

Fail state Description

Early release An attacker causes the DPS to release the secret before it is required. This may have a
number of different effects on the physical safety of the user by removing their ability to
disincentivise an attack.

Denial of service An attacker causes the DPS to never release the user’s secret, or to release it sufficiently
late, so that it no longer offers sufficient disincentive to physical assault.

In each case, respondents to the survey indicated that the tool itself would lose the confidence of its users,
and in both cases some answers suggested that the outcome could be serious:

“It could compromise journalist and subject safety.”

“Potentially very serious”

“The DPS involved would immediately lose the confidence of all clients. . . and be dead in the
water as an untrusted system”

All answers regarding the risk of losing confidentiality of the DPS secret suggested high risk to the
journalist and their source:

Q: What are the consequences of losing confidentiality of a secret stored in a DPS?

Very very serious, could blow cover of sources/risk of injury or death
Potential physical or digital harm to source and journo
Potentially very serious
It could compromise journalist and subject safety.

5.1.3 Summary

5 of 73 possible participants chose to complete the survey. This is a small sample, but offered a number
of qualitative insights into the needs of investigative journalists and their perceptions of the risks related
to a DPS.

Answers indicate a high level of caution from participants, requiring strong assurances that the tool they
are using is resilient against attack, or suggesting that they could never trust a third party in this way.
These answers inform a number of the requirements described in section 5.2.

20

5.2 Synthesised requirements for a DPS
Reasoning about the background, use case, and user needs for a DPS indicate a number of user stories. A
DPS requirement can be inferred from each user story.

Table 11: Reasoned user stories, mapped to requirements

User story Inferred requirement

As an investigative journalist, I want to keep my secret confidential from others, so
that it is still valuable as a deterrent.

Confidentiality

As an investigative journalist, I want to be able to indicate to the system that I am
still alive and well, so that it will not release the secret if I have not been attacked.

Awareness

As an investigative journalist, I want my secret released when I am unavailable (not
before, not long after), so that there is a direct relationship between an attack on me
and the release of the secret (supporting the deterrent effect).

Timing

As an investigative journalist, I want my secret to be stored and protected in a system
that is resistant to attacks on its confidentiality, integrity or availability, so that it is
available should it need to be released, and can be released without interference.

Resilience

As an investigative journalist, I want my secret to remain protected for as long as I am
alive, so that no matter when, if I am attacked, it can be released.

Durability

Analysis of the survey, targeting investigative journalists, corroborates these and provides supporting
evidence for several further requirements.

Affordability, Explainability, Visibility

Table 12: User stories inferred from the survey, mapped to requirements

User story Inferred requirement

As an investigative journalist, I want to be able to afford to use a DPS, so that cost
does not limit my use of this protective measure.

Affordability

As an investigative journalist, I want to understand the system and how it protects
and releases my secret, so that I can develop confidence in it.

Explainability

As an investigative journalist, I want the system to indicate that it holds a valuable
secret, so that threat actors believe it is real and active.

Visibility

These requirements are summarised in the following table with full descriptions.

Table 13: Requirements for a DPS

Requirement Description

Confidentiality A DPS must keep a user’s secret confidential until it determines it is appropriate to
release the secret.

Awareness A DPS must have a mechanism to check the subject’s well-being, and a method to
release the secret if the subject fails this test.

Timing A DPS should not release the subject’s secret early (ie. whilst they are still alive and
well), late (ie. too long after the subject has become unresponsive), or never.

Resilience A DPS must assume the existence of, and protect against, attempts by hostile threats
to compromise the secret’s confidentiality and integrity, and be resilient against
attacks intended to compromise its availability (CIA properties).

Affordability A DPS should use affordable technologies to provide its functionality, not relying on
resources beyond the means of the target subject group.

Durability A DPS should be expected to remain operational for a significant amount of time (eg.
the lifetime of a subject), with continued maintenance (including security patches),
support, or upgrade pathways if the technologies in use become obsolete.

Explainability A DPS must be presentable as a model that the target subject group can understand
and trust.

Visibility A DPS must be able to present evidence that it is operational, to contribute to its
deterrent effect.

21

5.3 Threat analysis
This section presents reasoning about the stakeholders, components and threats in a high level generic
DPS system. This provides a foundation for considering threats in section 8.

5.3.1 Stakeholders

The key stakeholders in a DPS system are the subject (owner of the secret), operator and platform
provider - controlling the software and platform the switch runs on and, dependent on the design, a
number of participants.

Table 14: Stakeholders in a DPS system

Actor Role

Subject Owner of a specific DPS. Inputs the initial secret, provides evidence of own well-being.
Depends on a reliable release of the secret if they are not. Depends on the reliability of
the DPS. Incentivised to protect their own safety, and to take steps to ensure the
reliability of the DPS.

Operator Owner of the DPS system itself, incentivised in some way to manage the resilience of the
various components in the system.

Platform provider Owner of the hardware and infrastructure that the DPS system operates on. Incentivised
to provide a reliable operating system and hardware on which the DPS system can run.

Participant (Optional. Required by some designs.) Member of a group tasked with determination of
the state of the subject’s well-being. Incentivised to protect their own safety, and the
safety of the subject. Motivated towards appropriate behaviour in some way (eg.
through loyalty to the subject, or a reward scheme).

NB. It is possible for the subject and operator (and sometimes also the platform provider) to be the
same actor.

5.3.2 Components

By reasoning about individual functions that could comprise a generic DPS, a number of independent
components can be inferred. Each component is responsible for one task, based on information provided
by other components.

Figure 5 illustrates these components, in relation to each other, and describes their roles.

Figure 5: Components and roles for a DPS

22

Table 15: High level components in a generic DPS

Component Role

Initialiser Component that handles the secret initially provided by the subject. Arranges safe
communication and storage of the secret, and establishes a method for the DPS to
check the well-being of the subject.

Secret store Component that stores the subject’s secret in such a way that it can be extracted only
when the right conditions are met.

Aliveness checker Component that can monitor evidence of the subject’s well-being, and is able to
activate or suppress the secret extractor dependent on the subject’s state.

Secret extractor Component that can retrieve the secret from the secret store, and share it to the
publishing medium.

Publishing medium Either a public medium where the secret can be published, or direct communication of
the secret to specific recipients.

Stakeholders and components as described above may change as the model becomes more specific.
Cryptography, distributed networks, or groups of people could be substituted for some of the roles,
functions or incentives.

A high level data flow diagram and threat analysis follows to examine the various ways each component
can be compromised, and the impact of these failures.

5.3.3 High level data flow diagram

Figure 6 illustrates a generic DPS as a data flow diagram, modelled using Threat Dragon.

Figure 6: Generic DPS data flow diagram, modelled in Threat Dragon

5.3.4 STRIDE-per-element threat analysis

The threats that apply to this model are listed in the report generated from the high level data flow
diagram using Threat Dragon. The output from Threat Dragon is included as Appendix B.

The high level model represents generic components. This facilitates a quick analysis of the various ways
each component can be compromised, and the impact of these attacks.

This analysis reveals a number of areas of significant vulnerability. These will require special consideration
when evaluating designs.

23

Table 16: Areas of significant vulnerability, generic DPS components

Component Spoofing Tampering Repudiation Info. disc. DoS Elevation

Subject ×
Initialiser × × × ×
Secret store × × ×
Aliveness checker × × ×
Secret extractor × ×

The impact of compromise of each of these components is discussed in the Threat Dragon model, Appendix
B. Some key risks are summarised below.

If either the subject or aliveness checker is successfully spoofed, the aliveness check may fail, as either:

• an attacker can force a user to report their well-being to the wrong place (causing an early release),
or

• an attacker can provide false proof of well-being (causing a denial of service or late release).

Table 17: Spoofing attacks on the subject and aliveness checker

Spoofed element Early release Denial of service

Subject An attacker spoofs the subject and
submits false evidence of their
well-being, preventing release.

Aliveness checker An attacker spoofs the aliveness
checker, causing the subject to
submit their evidence of well-being
to the wrong place, leading to early
release as the real aliveness checker
believes the subject to be
unavailable.

Internal components with no public-facing endpoints (the initialiser, secret store, secret extractor) are
less at risk of spoofing, but may face tampering, information disclosure, or denial of service attacks -
effectively causing the switch to fail to take an action, or disabling the aliveness check.

In the absence of an aliveness check, specific designs of switches may have their own preferred action.
Some designs will consider an attack on themselves the same as an attack on the subject, and so release
their secret. Others, that manage many subjects and secrets, may not know which secret to release.

The other key threat relates to the secret extraction capability. If attacked, this may disable the switch -
as even if the attack were detected, without the secret extractor the switch cannot release the subject’s
secret.

An escalation of privileges within the secret extractor could also result in the early release of the subject’s
secret, or potentially all_the secrets held in the secret store.

5.4 Risk analysis foundation
A comprehensive risk model for a given DPS depends on its specific implementation. However, it is
possible to reason about a number of properties upfront.

This section presents inferred assets, stakeholders, threat actors, and some reasoning about the impact of
compromise of those assets.

5.4.1 Informational assets

The informational assets of a generic DPS can be inferred from the components. A DPS must process
and protect a number of different informational assets, listed here:

24

Table 18: Informational assets in a DPS

Asset Name Description

A001 Subject identity A representation of the identity of the subject, used to evaluate the
evidence of well-being presented, to ensure it matches the identity of the
user that owns the DPS.

A002 Secret Representation of the subject’s secret. Stored and protected by the
secret store.

A003 Secret extraction
information

Information that may be used to extract the secret - eg. a decryption
key.

A004 Operational
information

Additional information relating to the operation of the DPS - eg. a
period for recurring aliveness checks, chosen behaviour should the
checks fail (eg. a cooling-off period before activating the secret
extractor, and information about the Publishing medium).

More specific implementations for a DPS may introduce additional informational assets required to
check the subject’s identity; manage storage, encryption and decryption of the secret; or for onward
publication.

Some techniques (for instance, application of forms of time-delay or witness encryption) could also remove
the need for a DPS to store and protect secret extraction information - instead relying on work done
by any actor to release the secret at the appropriate time.

5.4.2 Known threat actors

Knowledge of the threat landscape, and historical risks to investigative journalists, helps to inform a set
of actors that threaten the informational assets managed by a DPS.

No single list of threat actors exists, and no single scale exists to help assign values for the capability
of each - as these values are dependent on context. Here capabilities have been reasoned, and assigned
according to a simple scale:

• Very high: Threat actor has access to unlimited resources, expertise, and time; may not be
constrained by law enforcement.

• High: Threat actor has access to top of the range consumer resources, a department of experts,
and unlimited time. May be confident in avoidance of law enforcement, and may have access to
strong political influence.

• Medium: Threat actor has access to standard consumer tools, a degree of training, and determina-
tion.

• Low: Threat actor has access to standard consumer tools, limited resources, and limited training.

Table 19: Known threat actors

Threat actor Description Capability

Nation states
(extra-legal means)

Nation states and their intelligence agencies are considered to have
limitless resources with which to attack systems - making 0-day
vulnerabilities, and expensive physical or social engineering attacks
available.

Very High

Nation states (legal
means)

Nation states may choose to subject the operators or platform providers of
DPS services to legal pressure to halt their service or reveal stored secrets.

Very High17

Organised crime OC gangs may have various motivations for attacking a switch - either to
prevent information about themselves being released, or to cause the
release of information about their own adversaries. Criminals may also act
unpredictably, displaying behaviours such as revenge.

High

Activists Some activists may not approve of practices that withhold incriminating
information for any reason. They may perceive it as cowardly,
irresponsible, or even blackmail. To uncover and release this information,
activists may use technical or social engineering attacks. Activism is not
believed to be as well funded as organised crime or national security
organisations.

Medium

Law enforcement Considered separate from nation states, law enforcement bodies that
perceive DPS activity as blackmail (or another activity at odds with the
law) may attempt to shut down such systems, or arrest those operating it.
Some law enforcement bodies have a limited range of legal activities that
they can engage in, or may be called upon to enforce decisions made by
local justice systems.

Medium

25

Threat actor Description Capability

Script kiddies A high volume threat on the internet, script kiddies are people who, for
reasons such as boredom, curiosity, or malice, continuously test endpoints
for vulnerabilities (without much thought to the nature of the endpoint) -
exploiting them when found.

Low

Assumptions:

• This list does not contain mention of internal threat actors, such as disgruntled staff. Specific
implementations that rely on an operator18 may need to add additional threat actors.

• Competing organisations (such as rival journalism outlets) are not included in this model, and not
considered a threat19.

5.4.3 Impact to informational assets

Information from the survey, threat model, and reasoning inform an understanding of the impact of
compromise to each asset’s CIA20 properties:

Impact level is difficult to measure, as there are very few cases where loss of CIA properties of a DPS do
not lead to loss of the deterrent effect (so possibly enabling an attack on a subject). The following scale
is used:

• High: Could lead to the loss of deterrent effect, enabling an attack on the subject.
• Medium: Could be used to enhance an attack on a subject or DPS. The secret remains safe.
• Low: Undesirable, but does not compromise the reliability of the DPS, or confidentiality of the

secret.
Table 20: Impact to informational assets

Asset Asset name CIA Impact Level

A001 Subject identity C Loss of confidentiality of the subject’s identity may
represent a risk, as the subject may have chosen not to
reveal the details of their switch (or how to locate it), to
prevent it becoming an attack surface. However, to act as
a deterrent, the existence of a switch must be declared -
and so the positive angle is that this information may
constitute evidence that the switch is operational.

Medium

A001 Subject identity IA The subject identity is essential for determining the
well-being of the subject. If this is altered or made
unavailable, the switch will not have enough information
to determine the state of the subject. In this case, it must
follow the safest course of action. This is not a trivial
decision.

High

A002 Secret C Loss of confidentiality of the secret held in the switch itself
can have a high impact. If the secret is released early, it
can no longer be used as a disincentive to physical attack.
It may also inform the attacker just how much (or how
little) impact the secret could have, or may allow them to
put mitigations in place to plan for the secret’s
publication. These all weaken the switch as a protective
measure.

High

A002 Secret IA Alteration or deletion of the secret is a powerful attack
and this grants an attacker the ability to ‘defuse’ the
switch entirely, removing its disincentive to physical
attack, and rendering it useless.

High

A003 Secret extraction
information

CIA Confidentiality, Integrity, Availability | The information
required to extract the secret from the switch should
remain entirely under the control of the switch. If this
information becomes known, it offers insights into the
secret itself (see the impact of loss of confidentiality for
the secret). If it can be tampered with, it directly affects
the availability of the secret too. If the switch loses the
ability to extract and publish the secret it holds, it is
rendered useless.

High

17Nation states are considered to have very high capability where they have jurisdiction.
18This is the first suggestion that some designs may not rely on an individual or organisation to administer the DPS. It is

explored further in section 6.2.
19Large communities of investigative journalists exist that transcend organisational boundaries. It is reasonable to assume

that the notion of harming another investigation is sufficiently abhorrent to the community that this is a negligible risk.
20CIA: Confidentiality, Integrity, Availability

26

Asset Asset name CIA Impact Level

A004 Operational
information

C Operational information, such as the frequency and chosen
publishing details of the switch are of some value to an
attacker. They show the intended frequency of aliveness
checks, and details of the recipients (or medium of
publication). In turn, this information could be used to
improve the quality of an attack against the switch,
subject, or recipients - increasing the risk that individuals
involved will be attacked, or the switch disabled. However,
as with the subject identity, releasing information to the
effect that the switch is operational may contribute to the
switch’s deterrent effect.

Medium

A004 Operational
information

IA Ability to alter or remove the operational information
could render the switch inoperable (or impractical - for
instance, if the period for aliveness checks were increased
beyond a desirable limit).

High

The impact of loss of CIA properties of all information assets is evaluated as high except for confidentiality
of the metadata assets (subject identity and operational information), both evaluated at medium.

As seen when considering the confidentiality of subject identity and operational information, some
thought should be given to a means of publicising the switch’s active state (if not the details) to support
the switch’s deterrent effect. This should be balanced against the risks of advertising the switch’s location,
and so presenting a visible attack surface.

27

6 Implementation - Stage 2: Review of existing systems
This section presents a number of existing systems, each of which purports to meet the requirements of a
DPS:

Table 21: Existing systems reviewed

Section Category

6.1 Hosted consumer DPS systems
6.2 dApp DPS implementations
6.3 Open source DPS projects

Each system is analysed in the context of the requirements for a DPS, established in section 5.2 and
reproduced here.

Table 22: DPS requirements reproduced

Requirement Description

Confidentiality A DPS must keep a user’s secret confidential until it determines it is appropriate to
release the secret.

Awareness A DPS must have a mechanism to check the subject’s well-being, and a method to
release the secret if the subject fails this test.

Timing A DPS should not release the subject’s secret early (ie. whilst they are still alive and
well), late (ie. too long after the subject has become unresponsive), or never.

Resilience A DPS must assume the existence of, and protect against, attempts by hostile threats
to compromise the secret’s confidentiality and integrity, and be resilient against
attacks intended to compromise its availability (CIA properties).

Affordability A DPS should use affordable technologies to provide its functionality, not relying on
resources beyond the means of the target subject group.

Durability A DPS should be expected to remain operational for a significant amount of time (eg.
the lifetime of a subject), with continued maintenance (including security patches),
support, or upgrade pathways if the technologies in use become obsolete.

Explainability A DPS must be presentable as a model that the target subject group can understand
and trust.

Visibility A DPS must be able to present evidence that it is operational, to contribute to its
deterrent effect.

6.1 Hosted consumer applications
A number of consumer services exist that claim to meet some of the requirements of a DPS. Some come
with a number of disclaimers regarding the use cases they suggest for their users.

The following services are presented in this section, and evaluated in the context of the requirements for
a DPS, established in section 5.2:

Table 23: Hosted DPS systems evaluated

Product Summary

1 Dead Man’s Switch A system designed to meet end of life needs - such as messages for loved ones.
It checks for signs of life, and if not met, sends a number of emails to chosen
recipients.

2 Dead Man A system that checks for a response, and distributes documents by email if it
does not receive that response.

3 Dead Man Tracker A service that automatically contacts your friends and/or family in the event
that something happens to you.

4 Letters Cloud A service that allows you to create messages to be sent, should you stop
visiting your trigger link. (formerly komprom.at)

These applications are then compared and contrasted to determine if they meet sufficient needs for the
investigative journalism use case.

28

https://www.deadmansswitch.net
http://www.deadman.io/
https://www.deadmantracker.com/
https://letters.cloud/

6.1.1 Properties of consumer applications

Each of these systems takes responsibility for the safe storage and distribution of the user’s secret. This
makes each service a single point of failure for confidentiality, integrity and availability properties.

Most of these services do not document their design, and this makes it difficult to understand the risk a
person takes when trusting it with their secret. These systems face a number of threats, ranging from
casual hackers, through organised crime, motivated attackers (such as those named in the user’s secret),
and extremely well-resourced threats such as nation states. Users must make a trust decision about the
service - both regarding its intent to keep their secret, and its capability to do so.

6.1.2 Hosted DPS 1: Dead Man’s Switch

Table 24: Hosted solution summary: Dead Man’s Switch

Dead Man’s Switch

URL deadmansswitch.net
Privacy policy N/A
Released 2017
Last social post 2020-06-13
Pricing model Freemium21

Aliveness check channels Email, push notification, Telegram
Publishing medium Email

Dead Man’s Switch, shown in figure 7, is a service provided by Stochastic Technologies.

6.1.2.1 Mechanism The user creates a number of messages to be emailed to individuals if they do
not respond to prompts sent through the supported channels. The user responds to prompts by clicking a
unique link to activate a check-in on the site. (Signing in to the site is also considered proof of aliveness.)
If the user misses a predetermined number of prompts, their messages are sent.

“Your switch will email you every so often, asking you to show that you are fine by clicking a
link. If something were to. . . happen. . . to you, your switch would then send the emails you
wrote to the recipients you specified. Sort of an ‘electronic will,’ one could say.”

6.1.2.2 Use cases Content on the site states that the recommended use case is for end of life needs,
such as a message to loved ones. The site also contains a number of disclaimers:

“Dead Man’s Switch is provided without any guarantees of anything, not even that it will do
its job properly”

“this service is meant for casual use by the average person. Please don’t use the service if you
need strong guarantees of privacy, e.g. if you are a whistleblower or any similar life-and-death
situation. It is NOT meant to safeguard against high-value messages.”

This suggests that the service is designed with casual threats in mind. It is an acknowledgement that it
may prove vulnerable to well-resourced threats. Stochastic Technologies are based in the Cayman Islands,
and subject to UK law.

6.1.2.3 Evaluation Details of the design and technologies supporting Dead Man’s Switch are not
available, however the information available does allow reasoning about the service in the context of
requirements:

21A freemium model offers basic services for free, attaching a charge for advanced features.

29

Figure 7: Hosted DPS 1: Dead Man’s Switch (deadmansswitch.net)

30

Table 25: Requirements vs Dead Man’s Switch (hosted DPS 1)

Requirement Comments

Confidentiality It is reasonable to assume the secret is treated confidentially. However even if it is
encrypted, the service retains a key that can be used to decrypt it - (notwithstanding issues
of configuration, about which information is not known) making it confidential to all except
the service itself, and any system administrators with access to the service’s keys. No
privacy policy is available.

Awareness The system can check aliveness through a number of channels: web push notification,
telegram, email, sign in. This improves the quality of the aliveness check, but represents an
attack surface for threats wishing to falsify signs of life.

Timing A disclaimer states that the switch does not guarantee “anything, not even that it will do
its job properly.” Whilst likely written this way as a legal defence, this reduces confidence
that the switch can reliably meet this requirement. No data on uptime, and no SLA are
provided.

Resilience The disclaimer on the site clearly states that the service is not intended for high-value
messages. The switch is unlikely to prove resilient to well-resourced threats to the
confidentiality of the secret, integrity or availability of its service.

Affordability The switch offers a free tier, and a $50 single payment premium service. Both are
considered affordable to a journalist or an organisation they work for.

Durability The only paid tier is a lifetime single payment. This means that the service must steadily
gain customers to balance income against maintenance costs. If new membership slows
sufficiently, the switch may become expensive and the operator may choose to stop the
service.

Explainability As with other hosted solutions the architecture and code is not published - making it
difficult to evaluate.

Visibility No information suggests that the service will indicate whether a switch has been created by
a given subject, or about a given threat, and whether it is active.

6.1.3 Hosted DPS 2: Dead Man

Table 26: Hosted solution summary: Dead Man

Dead Man

URL deadman.io
Privacy policy N/A
Released 2012
Last social post 2016-01-13
Pricing model Free
Aliveness check channels Email, SMS, phone call
Publishing medium Email, SMS, phone call

Dead Man, shown in figure 8, was created by Jesse Lovelace for the LSRC Hackathon in 2012.

6.1.3.1 Mechanism Dead Man stores a number of email recipients, messages, and files. It contacts
the user at predetermined intervals by email, SMS, or phone call and if they do not respond it will then
send the stored messages and files to the chosen recipients.

6.1.3.2 Use cases The site advertises a number of use cases for its service:

• Whistleblowers
• Wilderness excursions (missing persons)
• Shut-ins
• End of life needs
• The unknown

If taken at face value, these use cases might indicate a design that’s intended to be resilient against
sophisticated threats (eg. for whistleblowers). However, this should be balanced against knowledge that
the service was created at a 2012 hackathon, and should be considered more a proof of concept.

31

Figure 8: Hosted DPS 2: Dead Man (deadman.io)

32

6.1.3.3 Evaluation Dead Man relies on a number of technologies:

• Hosted on Google App Engine
• Written in Python
• Integrations with Twilio & SendGrid (providing SMS, phone call, and email capabilities)

The service comes with a disclaimer regarding its use of the word insurance:

“Deadman doesn’t provide heath, life, auto, etc. insurance. It provides the kind of insurance
that keeping a fire-extinguisher in your house provides or having a spare tire in your car.”

Attempts to sign up using syndicated Google account were met with a warning (see: figure 9), suggesting
that the service has not been updated since changes to account integration were introduced. Account
creation through all the offered means failed.

Figure 9: Dead Man service (hosted DPS 2) blocked

Despite this the service, if it were as described, should be able to meet some of the requirements.

Table 27: Requirements vs Dead Man (hosted DPS 2)

Requirement Comments

Confidentiality The system is hosted on Google App Engine, and protections for that platform apply
(dependent on good configuration). Although Dead Man does not have a privacy policy,
Google’s is substantial and GDPR compliant. It is reasonable to assume that,
notwithstanding a misconfiguration22, the system is designed to restrict user secret visibility
to the service and its administrators.

Awareness The system can check aliveness through a number of channels, supported by Twilio and
SendGrid: email, SMS, or phone.

Timing The system is based on reliable technologies (Google App Engine, Twilio, SendGrid) and so
is expected to be able to deliver messages reliably.

33

Requirement Comments

Resilience Although composed from several services considered to be resilient (Google App Engine,
Twilio, SendGrid), the service itself was developed at a hackathon and is likely best
considered a proof of concept. No information about a threat model is available, and so it is
reasonable to assume the service is not resilient to well-resourced threats.

Affordability The site advertises a free service.
Durability The service was created in 2012, and does not seem to have been updated for a while (as

indicated by the fact that it is no longer possible to sign in or create accounts through the
various mechanisms offered). With no apparent source of funding, it is likely that after
initially creation, this service has not been maintained.

Explainability As with other hosted solutions the architecture and code is not published - making it
difficult to evaluate.

Visibility No information suggests that the service will indicate whether a switch has been created by
a given subject, or about a given threat, and whether it is active.

6.1.4 Hosted DPS 3: Dead Man Tracker

Table 28: Hosted solution summary: Dead Man Tracker

Dead Man Tracker

URL deadmantracker.com
Privacy policy deadmantracker.com/privacy-policy
Released 2019
Last social post 2021-05-19
Pricing model Freemium
Aliveness check channels Email, app push notifications
Publishing medium Email, SMS, phone

Dead Man Tracker, shown in figure 10, operates as an inexpensive consumer service. The operator
responded to requests for information, and this informs the following commentary.

6.1.4.1 Use cases Initially created for the operator, as a safety device to notify friends and family of
accidents when travelling, the service has since evolved to incorporate additional use cases:

• Professionals working alone (such as roofers)
• Elderly people going on walks alone
• Parents that want their children to check in
• People walking home after a night out

Additionally some domestic abuse charities have asked the operator for a discreet method, and the mobile
app provided has a mode that appears to be a game with a hidden panic button for victims.

6.1.4.2 Mechanism Users can respond to emails or push notifications from the service (if they have
the app installed). If they do not, it sends messages to chosen recipients by email, SMS or phone call.

6.1.4.3 Evaluation Dead Man Tracker relies on the following services:

• Hosted on Amazon Web Services (AWS)
• Stripe / Google Pay / Apple Pay for payments

It appears to be maintained, and the operator is responsive.

22For example, in 2020 thousands of Android applications were found to be leaking data through misconfigured Firebase
databases [32].

34

Figure 10: Hosted DPS 3: Dead Man Tracker (deadmantracker.com)
35

Table 29: Requirements vs Dead Man Tracker (hosted DPS 3)

Requirement Comments

Confidentiality This is the only system surveyed that has a full privacy policy. The system is hosted on
AWS - and protections for that platform apply (dependent on good configuration). Data is
encrypted at rest, although the service must retain a key to decrypt it - making the user’s
secret confidential to all except the service itself, and any system administrators with access
to the service’s keys.

Awareness The system can check aliveness through email or push notification.
Timing As an AWS hosted service, the system is based on reliable technologies, so is expected to be

able to behave reliably.
Resilience The creator has shared priorities for a threat model in response to questions, and has placed

high value on system availability, and resilience to casual threats. Hosting on AWS provides
that high availability, and the design has separated the trigger mechanism from the rest of
the service - to prevent a denial of service attack on the website from affecting delivery of
secrets. The creator acknowledges some personal risk, noting that it is probably easier to
attack the operator or individual users of the service, rather than the infrastructure.

Affordability The service has a free tier (offering a single switch), or a $10/year subscription service with
unlimited switches, file storage, API access, and multiple publishing mediums. Both are
considered affordable to a journalist or an organisation they work for.

Durability The service is currently maintained, and the creator is responsive. The subscription model
allows for time and costs to maintain the service.

Explainability The existence of a privacy policy goes some way towards documentation that a subject
could use to determine whether they trust the system with their secrets. This system is
assumed to follow a classic design. Communication with the operator revealed that it is
hosted on AWS, and that subject data is encrypted at rest. However, as with other hosted
solutions the architecture and code is not published - making it difficult to evaluate.

Visibility No information suggests that the service will indicate whether a switch has been created by
a given subject, or about a given threat, and whether it is active.

6.1.5 Hosted DPS 4: Letters Cloud

Table 30: Hosted solution summary: Letters Cloud

Letters Cloud

URL letters.cloud
Privacy policy N/A
Released 2020
Last social post N/A
Pricing model Freemium (implied)
Aliveness check channels Passive (trigger link URL)
Publishing medium Email, Twitter

Originally known as komprom.at, little is known about Letters Cloud, shown in figure 11. The site states
it was created by “a team of security professionals, programmers and web developers who like privacy.”

The operator, going by the name of Anomia Security, did responded to requests for information - but
provided only a little information:

• They chose not to share any information about the system’s architecture.
• They indicated that the system is compartmentalised, giving it resilience to denial of service attacks

and exploits: “There was never a successful attack.”
• They indicated that they had chosen to remain anonymous as a measure to protect themselves from

attack as individuals, and acknowledged that this limited the credibility of the app.

6.1.5.1 Use cases The site itself simply states that it can be used to send messages “when you can’t
do it in person any more, for any reason.”

In a description on its website, it mentions two possible scenarios:

• A mechanism to pass on messages to loved ones after death.

36

Figure 11: Hosted DPS 4: Letters Cloud (letters.cloud)

37

• A whistleblower, who uses the service to disincentivise an attack on them.

6.1.5.2 Mechanism The user defines messages to be sent to a particular recipients. The service
gives the user a URL (a trigger link) they should visit regularly (by making it their home page in a web
browser, for example). If they do not, the service then sends messages to the specified recipients by email
or tweet.

This is the only consumer service reviewed that works passively in this way, allowing users to send them
a periodic signal rather than prompting for signs of life through traditional communication channels.

6.1.5.3 Evaluation The security consciousness of the operators, about whom very little is known,
might be considered reassuring. In this case, however, it also makes it difficult to learn about the security
properties of the service - and this could make it difficult for journalists to trust the operators.

Table 31: Requirements vs Letters Cloud (hosted DPS 4)

Requirement Comments

Confidentiality Not a lot of information is available. A short statement on the site’s page indicates how
little information is gathered by the system. Developers have taken pains to ensure their
own identities are not listed. Whilst indicative of respect for privacy, this could make it
more difficult to trust the system’s operators.

Awareness The user is given a URL to visit regularly, called the trigger link.
Timing Nothing is known about the service’s reliability with regard to timing, but the description

suggests that a missed check-in followed by a determined amount of time will result in
messages being sent.

Resilience The trigger link given to the user has interesting security properties. Instead of regularly
reaching out to the user with a reminder the service expects the user to visit the trigger
link. The trigger link is considered a secret to be kept and used by the user. This alters the
challenge for an attacker, making it more difficult to learn about the user’s activity with
Letters Cloud - as common communication methods (email, SMS, etc.) are not used. Other
information about the service’s security properties isn’t available.

Affordability The service provides a free tier, and content suggests a freemium pricing model - however
no information about the cost of the premium service is available, other than the intention
to make it possible to pay with cryptocurrency.

Durability The service seems to have fallen into disrepair. Difficulties experienced signing up to the
service make it difficult to test.

Explainability As with other hosted solutions the architecture and code is not published - making it
difficult to evaluate.

Visibility No information suggests that the service will indicate whether a switch has been created by
a given subject, or about a given threat, and whether it is active.

6.1.6 Comparisons

These implementations each meet different combinations of the requirements.

6.1.6.1 Confidentiality Some services fared better than others. Only Dead Man Tracker offers a
privacy policy (although Letters Cloud have a strongly worded sentence or two about respect for privacy).
In these cases, it is difficult to learn more (and so difficult to develop user confidence) without access to
designs for the systems.

6.1.6.2 Awareness Some services offer a wide range of channels for aliveness checks. This can
improve the quality of the check (and assure a user that they can find a convenient method). However,
there is a balance to be found: More channels make it harder to cause early release through denial of
service, but also represent an attack surface for threats wishing to falsify signs of life and cause a denial
of service.

Letters Cloud is unique in offering a passive means of communicating aliveness. Whilst possible to spoof
a user’s aliveness by learning their trigger URL, an attacker must do so by compromising the user’s
personal device, obtaining a record of their web browsing history, or sniffing their traffic.

38

6.1.6.3 Affordability All services reviewed fell into the affordable category - either having a free
service, or having what is determined to be a low cost premium solution.

6.1.6.4 Durability Of the services reviewed, only Dead Man’s Switch and Dead Man Tracker are
operational. Both services have a freemium model. Dead Man’s Switch offers a single lifetime payment
as the premium tier, whereas Dead Man Tracker operates a subscription payment. Services with a
subscription payment model are more likely to endure, having incentivised themselves to keep the service
operating (and having made it possible to continue paying for hosting, patching, and software services).

6.1.6.5 Resilience Neither operational service has rated themselves as suitable for use in situations
with sophisticated attackers (such as the investigative journalist use case). The operator of Dead Man
Tracker notes in a response to questions that individuals are likely easier to attack than the service itself -
and that attempting to attack and deactivate a subject’s switch is easier than attempting to disrupt the
service itself.

6.1.6.6 Explainability and Visibility With the exception of Dead Man Tracker’s privacy policy,
these systems offer very little to support either of these requirements.

6.1.7 Summary

Evaluation and comparison of these solutions suggests that none of the consumer offerings are appropriate
for the investigative journalism use case.

The solutions above are summarised in Appendix C table 01, evaluated in table 04, and scored in table
05. These scores are reproduced in section 6.4.

6.2 Distributed Apps (dApps)
A number of distributed apps have been proposed that meet some of the requirements for a DPS system.

The following are presented in this section, and evaluated in the context of the requirements for a DPS,
established in section 5.2:

Table 32: dApps evaluated

System Service description

1 KillCord A tool to build resilient dead person switches for releasing encrypted payloads.
2 Kimono A digital time capsule built on the Ethereum blockchain.

Although Kimono is a time-lock solution, it is included for discussion as it could be adapted for use as a
DPS.

6.2.1 Properties of dApps

Cryptocurrency networks distribute smart contracts for execution across their network, relying on
consensus to determine the result. For example, the Ethereum cryptocurrency network will execute smart
contracts written in a number of languages (Solidity, Vyper, Yul are supported) in an environment known
as the Ethereum Virtual Machine (EVM).

The decentralised nature of these networks impacts a number of security properties of any system that
relies on them.

• The size of cryptocurrency networks and use of consensus gives smart contracts strong availability
and integrity properties.

• To prevent them from executing correctly, an attacker must attack the whole network and gain
control of a majority share of the nodes.

• However, in their current form, smart contracts are not equipped to hold secrets as the security
properties of the EVM cannot be guaranteed across an untrusted network.

These properties are discussed in detail in section 7.4.2.2.

39

https://killcord.io/
https://github.com/hillstreetlabs/kimono

6.2.2 dApp 1: KillCord

Table 33: dApp 1 summary: KillCord

KillCord

URL killcord.io
Source code github.com/nomasters/killcord
Released 2018
Last updated 2021-07-16

KillCord is a dApp designed to meet the requirements of a DPS. It assists a subject to publish an
encrypted secret to IPFS23, and sets up a smart contract they can use to track their well-being. In the
case that they fail to check-in to the smart contract, the system then releases the decryption key for the
subject’s secret.

KillCord comes with a disclaimer:

“WARNING This software is in early alpha. Please do not rely on this with your life. Though
great care has been taken to ensure that this code is as well structured and straight-forward
as possible, it has not undergone proper peer-review and could have both minor and major
bugs that undermine the integrity of the system.”

6.2.2.1 Mechanism KillCord has a number of components:

• An Ethereum smart contract to hold the application state and track the subject’s aliveness.
• A client CLI, written in Go, meant to run on a personally controlled system that sets up the DPS,

and enacts check-ins.
• A hidden publisher, written in Go, that communicates with the Ethereum smart contract and

publishes the key for the encrypted payload in the event that the subject stops checking in.
• IPFS is used to store and share the subject’s encrypted secret.

In its default configuration, KillCord uses Ethereum to host the smart contract, and IPFS to store the
encrypted secret. Both are distributed networks and offer high availability.

Illustrated in figure 12, the subject uses the client CLI on their personal device regularly to check-in
to the smart contract. If they fail to do so, the smart contract indicates this, and a hidden publisher
application publishes the key to the encrypted payload.

6.2.2.2 Evaluation

Table 34: Requirements vs KillCord (dApp 1)

Requirement Comments

Confidentiality KillCord’s smart contract stores the secret as an encrypted file on IPFS. As the smart
contract cannot protect the decryption key, KillCord relies on a hidden publisher - which
must be able to decrypt the subject’s secret to release it. The confidentiality of the
publisher is linked to the confidentiality of the user’s secret, and relies on the security
properties of the system it runs on.

Awareness The KillCord smart contract tracks the subject’s aliveness: The user’s use of Ethereum is
considered a proxy for aliveness. and it will only accept evidence of wellbeing as a call to
the smart contract made with the identity of the subject’s cryptocurrency account.

Timing The KillCord smart contract is guaranteed to run by the Ethereum network, however if the
publisher can be located and attacked, it may be possible for an attacker to prevent release
of the secret at the appropriate time.

23InterPlanetary File System (IPFS) is discussed in section 7.5.4.

40

Requirement Comments

Resilience The smart contract is resilient against attempts to compromise its integrity and availability
through the properties of the cryptocurrency network. The user’s cryptocurrency account is
used as the identity to submit well-being check-ins to the smart contract. If located, the
publisher (carrying the decryption key for the secret) could be attacked to deny service,
alter the integrity of the secret during publishing, or obtain the decryption key and release
the secret early. IPFS is used for the release of the encrypted secret, and its decryption key,
offering high availability and integrity.

Affordability Use of KillCord requires a small amount of gas (Ethereum currency to be spent on
distributed computing) for the smart contract, aliveness submissions, and final publishing.
This has points of comparison to a subscription model.

Durability Once a DPS is established, provided the small amounts of gas required are paid for, the
network itself takes care of maintenance. Durability depends on continued support for EVM
smart contracts, the Ethereum blockchain, and IPFS.

Explainability KillCord is fully described in articles and papers, and its source code repository. Although
it relies on a number of complex components, including a smart contract, IPFS, and a
hidden publisher - it should be possible to explain in simple terms. However, it is also
anticipated that most investigative journalists have not developed sufficient expertise to
create and configure a DPS using the command-line tools provided. This, combined with
the requirement to learn about several complex aspects of the system before trusting it,
may make it difficult to trust without advice from a trusted person.

Visibility The encrypted secret on IPFS may serve as a visible indicator that a KillCord switch is in
use, provided it were advertised by the subject to indicate they had created it.

Use of Ethereum and IPFS provide the integrity and availability properties required but, as mentioned in
section 7.4.2.2, smart contracts cannot hold secrets. KillCord’s solution is to operate a separate, hidden,
publisher - which stores the decryption key, checks the state of the smart contract to determine aliveness,
and does the work to decrypt and publish the secret if the user is no longer available. In turn, this
publisher becomes responsible for the confidentiality of the subject’s secret.

The gas24 required to operate the smart contract is expected to be within the reach of journalists or the
organisations they work for, but may depend on the computational capability of the network. ie. If the
cost of Ethereum varies, so will the cost of operating the DPS.

6.2.3 dApp 2: Kimono

Table 35: dApp 2 summary: Kimono

Kimono

URL kimono.network (unavailable)
Source code github.com/hillstreetlabs/kimono
Released 2018
Last updated 2018-05-29

Kimono is a time-lock system, using a countdown timer to determine when it is appropriate to release
the user’s secret.

NB. Kimono no longer seems to be supported. (The last change to the github repository was recorded in
2018, and the project’s site, kimono.network, is no longer available.)

6.2.3.1 Mechanism Kimono, described by Paul Fletcher-Hill in 2018 [33], allows a user to distribute
fragments of a secret key amongst a group of trusted participants using Shamir’s Secret Sharing Scheme
(SSSS), a K of N threshold solution (described in section 7.1.1). The fragments are distributed by IPFS
(described in section 7.5.4).

It operates a countdown timer as an Ethereum smart contract. When this contract’s timelock completes,
trusted participants must publish their fragment.

24Gas refers to the cost of performing a transaction on the Ethereum network.

41

Figure 12: KillCord relational diagram, reproduced from github.com/nomasters/killcord

Kimono provides a motive for participants to behave appropriately, issuing a reward for publication at
the appropriate time. The K of N strategy offers some resilience against participant failure.

6.2.3.2 Evaluation

Table 36: Requirements vs Kimono (dApp 2)

Requirement Comments

Confidentiality Kimono first breaks the user’s secret into SSSS fragments, across a network of N peers to
share with the public only once the time-lock is complete. Each fragment is encrypted for
its recipient and distributed by IPFS. No individual can reveal the secret, and K or more of
the participants would need to collude to release the secret early.

Awareness N/A Kimono is a time-lock solution. It would need to be adapted to serve as a DPS.
Timing The smart contract behaves reliably with high availability - it is a good mechanism for

determining when to release the secret. (As mentioned, Kimono is a time-lock solution,
though.) The participants are incentivised to release their fragment on time, and will be
rewarded by the smart contract for doing so.

Resilience At the heart of the solution is a K of N network of peers. Resilience of the system relies on
the appropriate behaviour of at least K participants. This protects the confidentiality,
integrity and availability of the system. Secret fragments are distributed by IPFS -
considered highly available and with controls for integrity.

Affordability There is a balance between affordability and timing/resilience of the system: Assuming the
only incentive for participants is financial reward, the subject must select a high enough
reward to make their network resilient against bribes.

Durability Durability depends on continued support for EVM smart contracts, the Ethereum
blockchain, and IPFS.

Explainability Kimono is described in a formal paper, but as its site is no longer available simple
explainers are not available. It ought to be possible to describe but as with KillCord, it
relies on a number of complex components and this, further complicated by the need to
trust a group of participants, may require a subject to spend time and effort understanding
it before they could trust it.

42

Requirement Comments

Visibility The encrypted secret on IPFS may serve as a visible indicator that a Kimono time-lock is in
use, provided it were advertised by the subject to indicate they had created it. The
distribution of SSSS fragments to a number of participants may also serve to indicate that
Kimono is in use, provided a party were sufficiently interested to discover this on IPFS.

Kimono approaches the problem of decryption and release of the subject’s secret by distributing fragments
of the decryption key amongst a trust network of N participants. SSSS ensures that K participants are
required to reconstruct the secret.

By providing a financial incentive for participants to behave appropriately, Kimono balances risk of
inappropriate behaviour amongst the network against cost. It is not immediately obvious how much it
would cost to persuade K people from a trust network to reveal their .. Although some may take their
task seriously, others may not in the face of a sufficient bribe25.

Although Kimono is designed to behave as a time capsule, a scenario where the timelock itself were
exchanged for an aliveness check would meet the requirements for a DPS. This is a small modification.

6.2.4 Summary

Both solutions rely on different solutions to manage and release of the subject’s secret:

Table 37: dApp approaches to manage the subject secret

Solution Approach

KillCord Relies on a hidden, trusted publisher application to store and release the decryption key.
Kimono Distributes SSSS fragments of the decryption key amongst a trusted group of participants,

who are incentivised to release at the right time.

Both exploit the non-repudiable and highly available nature of smart contracts to ensure that the aliveness
signal is reliable and visible to the secret extractor (either the publisher application, or the participant
group). As discussed in section 7.1, choice of participants and selection of values for K and N will provide
assurances to users of Kimono that the system is going to behave as required.

Smart contracts rely on cryptocurrency nodes to execute their code. This impacts the durability
properties of each DPS. Should the underlying network be abandoned (through loss of confidence in the
cryptocurrency, for example), or the virtual machine that they run on be deprecated, the switch itself
could fail to operate.

Cryptocurrencies that depend on proof-of-work mining activity consume a vast amount of energy.
Unchecked, this level of consumption will continue to contribute to devastating climate change [34]:

“It is unequivocal that human influence has warmed the atmosphere, ocean and land.”

“Global surface temperature will continue to increase until at least the mid-century under all
emissions scenarios considered.”

This will inevitably affect the durability of any solution that ought to be available over the course of a
human lifetime (and may also shorten the expected lifetime of the subject).

Solutions built to depend on wasteful cryptocurrencies carry the risk that their supporting infrastructure
will be abandoned in favour of less computationally intensive and environmentally damaging trading
systems.

The impact of this, and planned improvements to the Ethereum network are discussed in section 7.4.3.1.

The solutions above are summarised in Appendix C table 02, evaluated in table 04, and scored in table
05. These scores are reproduced in section 6.4.

25“More than 70% of people would reveal their computer password in exchange for a bar of chocolate, a survey has found.”
BBC News, 2004: http://news.bbc.co.uk/1/hi/technology/3639679.stm

43

6.3 Open source solutions
A number of open source implementations exist, each attempting to meet some of the needs of users of a
DPS. The following is a subset of those solutions, selected for relevance to this thesis. Each has a unique
approach to the problem.

Table 38: Open source DPS projects evaluated

Repository Description

1 skickar/DeadManSwitch A python script that can be used to encrypt a user secret (and delete
the original) if a keyphrase is not tweeted from a given account in a
certain amount of time. (Possible use could be to conceal damning
evidence.) It could also be adapted to decrypt a user’s file if the
keyphrase is not tweeted - so releasing a secret.

2 h313/dead-mans-switch A python web service that accepts a POST of a predefined password. If
this has not been received after a day, it emails a predefined message to
a given email address.

3 deadmenswitch/dms A web server wraps access to a smart contract (DMSContract). This
stores a map of switch configurations.

4 EsmailELBoBDev2/Dead-
man-s-switch

A script that accepts a password. It is checked against the OS keyring
service, and if correct, the date for release of the user’s secret is pushed
back by a day. If the user misses a day, the secret is sent by SMTP to a
predetermined recipient.

5 dmp1ce/DMSS An application to assist in the SSSS fragmentation of a symmetric key
used for encryption / decryption of a secret, the distribution of those
fragments to trustees (participants), and tracking the user’s aliveness -
notifying the trustees if the user is not responsive.

6.3.1 Properties of open source solutions

Generally speaking, code-only projects require the user to operate and host a solution. (In the case of those
that employ smart contracts, they require the user to fund and place the contract on a cryptocurrency’s
blockchain.)

This is often a limiting factor when considering mitigations that require substantial resources. (For
instance, those that require software to be hosted in multiple jurisdictions, or in locations with physical
protection, quickly become prohibitively resource intensive for individuals unless they can rely on an
existing network such as a cryptocurrency blockchain.) It also places full responsibility for operational
security on the user - including the encryption and safe deletion of the original secret’s plaintext.

6.3.2 Evaluations

Appendix C presents evaluations of all open source projects listed against the requirements for a DPS.

Several of these projects are short scripts, designed to fulfil a partial need for an individual. Others are
hackathon projects, or projects created by small teams, for systems that could potentially meet a few
more of the requirements for a DPS.

Open source solution 3, deadmenswitch/dms, stands out: It is an example of a simple smart contract,
able to store and release a secret when queried. It is passive, requiring the subject to check-in and any
recipients to check for a message. This solves a common issue with smart contracts: they cost money to
execute, and if they are caused to poll regularly to run an aliveness check, they could create a significant
bill over time.

This solution is incomplete, however. Smart contracts run in the EVM, which cannot hold secrets. This
means that the time of release for the content of a DPS built with this system cannot be controlled, and
such a solution cannot meet the confidentiality requirement as any determined attacker is able to extract
the subject’s secret.

The open source projects each had unique approaches to the problem - and each has their own strengths
and weaknesses. These solutions are summarised in Appendix C table 03, evaluated in table 04, and
scored in table 05. These scores are reproduced in section 6.4.

44

https://github.com/skickar/DeadManSwitch
https://github.com/h313/dead-mans-switch
https://github.com/deadmenswitch/dms
https://github.com/EsmailELBoBDev2/Dead-man-s-switch
https://github.com/EsmailELBoBDev2/Dead-man-s-switch
https://github.com/dmp1ce/DMSS
https://github.com/deadmenswitch/dms

The evaluations and scoring show that none of the open source solutions are suitable for the investigative
journalist scenario.

6.4 Scoring
All DPS systems described in sections 6.1 (hosted consumer applications), 6.2 (dApps), and 6.3 (open
source solutions), are evaluated and scored by the researcher against the requirements for a DPS26 in
Appendix C, table 05 according to the following criteria:

Table 39: Scoring criteria for evaluated DPS solutions

Score Description

0 Does not meet requirement, or no information available.
1 Shows awareness of the requirement, minimal steps towards a solution, with significant room for

improvement.
2 Partially meets the requirement, with some room for improvement.
3 Meets the requirement comprehensively, with little or no room for improvement.

This scoring matrix is reproduced as figure 13.

Figure 13: Scoring matrix for existing DPS solutions

Some classes of solution show strengths in specific areas:

• All solutions showed strong affordability - none suggesting that they would be prohibitively expensive
for investigative journalists or the organisations they work for, regardless of the charging model.

• The dApp solutions are expected to show strong scores for resilience and durability, relating to the
guarantees of availability and integrity made by blockchain networks, and financial incentives that
exist for miners and nodes to ensure that the network endures.

26Requirements are defined in section 5.2.

45

• However, smart contracts struggle to provide guarantees of confidentiality and must rely on a third
party to contain the actual secret (or decryption key for the secret), so creating an additional attack
surface and limiting the resilience score attainable.

• Very few solutions scored well on the visibility requirement. Those that distribute their secret by
IPFS, or operate a smart contract in the public domain, were considered to be able to demonstrate
activity.

• Explainability is difficult to measure, but in particular the hosted solutions struggled to score highly
here as none were willing to share information about how they work in sufficient detail to develop
trust for the solution.

As described in the evaluations, no individual solution meets all requirements for a DPS to a sufficient
level for the investigative journalism use case.

46

7 Implementation - Stage 2: Review of components
The previous section presented existing systems. This section presents a number of components relevant
to the design and implementation of new DPS systems:

Table 40: Supporting research for DPS capabilities

Section Capability

7.1 Trust networks, and subjective logic
7.2 Aliveness checks, and proxies for aliveness
7.3 Confidential computation
7.4 Guaranteed execution
7.5 Publishing mediums

7.1 Trust networks
Various implementations of DPS rely on networks of people to assess aliveness of an individual, or to
hold and release the user’s secret. This section discusses a number of techniques that help to manage
participant groups, and to manage their risks.

7.1.1 Shamir’s Secret Sharing Scheme

As mentioned in “15 Men on a Dead Man’s Switch” in section 3.8, Shamir’s Secret Sharing Scheme (SSSS)
is a commonly used K of N threshold scheme. A secret can be divided into N fragments, of which only
K are required to reconstruct it.

A number of implementations of SSSS exist, including a unix tool which simplifies the process of dividing a
secret into fragments. Jameson also suggests using a passphrase, and as the unix tool supports application
of SSSS to secrets of up to 128 ASCII characters, this should suffice for a strong passphrase.

In the example below, SSSS is being used to split a secret (X marks the spot) into 5 fragments, which
can then be reconstituted using only 3 of them:

$ ssss-split -t 3 -n 5
Generating shares using a (3,5) scheme with dynamic security level.
Enter the secret, at most 128 ASCII characters: X marks the spot
Using a 128 bit security level.
1-a07cfafadfb8c949e10043063dd77bf9
2-c8aca4294241312eae985d2480ffa9f7
3-b94432ce93edd7d2d360939fc0f4b641
4-08426b9a2a8d5f0cde7c1b33734c35bc
5-79aafd7dfb21b9f0a384d58833472a18

$ ssss-combine -t 3
Enter 3 shares separated by newlines:
Share [1/3]: 3-b94432ce93edd7d2d360939fc0f4b641
Share [2/3]: 5-79aafd7dfb21b9f0a384d58833472a18
Share [3/3]: 1-a07cfafadfb8c949e10043063dd77bf9
Resulting secret: X marks the spot

7.1.1.1 Explanation SSSS relies on the notion that K points can define a polynomial of degree
K − 1.

Table 41: Polynomial degrees

Points Polynomial Degree

2 Line 1
3 Parabola 2
4 Cubic curve 3

47

Defining a curve as the secret, a subject can select N points from it, and give those to N trusted contacts.
A minimum of K points are required to reconstruct the original curve. The degree of the polynomial
defines K.

7.1.2 Choosing participants

A number of factors will help to decide which people or services to include in a K of N threshold solution.
It is helpful to understand how the addition of a person will affect the overall behaviour of a group of
participants.

• Is a given participant capable and willing to perform the actions requested of them?
• How likely is it that a given participant will engage in inappropriate behaviour in a given time

period?
• How vulnerable is a given participant to threats that could alter that behaviour?

K of N systems are resilient, but still vulnerable to possible attacks:

Table 42: Failure states for a K of N system

Attack Description

Denial of service Participants are caused to indicate that the user is alive and well when they are
not (or participants are prevented from participating).

Early release Participants are caused to agree (under duress or not) that the user is no longer
alive and well, causing an early release of the secret.

These factors may need to be regularly reevaluated, and confidence in the system recalculated as time
passes. Some systems described earlier have incentives built into them - rewarding participants for
appropriate behaviour. When managing a group, a person will often do this instinctively - selecting
participants with good incentives (such as friends and family), or arranging payment for satisfactory
behaviour.

7.1.2.1 Naive probability A simple probability can be calculated to represent the likelihood of K
participants in a network of N people behaving appropriately, using the formula:∑i=N

i=K(
(

N
i

)
· P (success)i · P (1 − success)N−i)

Where:

• N = total number of participants in the group
• K = number of participants required to behave appropriately for the group to behave correctly
• P (success) = probability of a member of the group behaving appropriately when required

This approach is considered naive for a number of reasons:

• It attempts to estimate the likelihood of human behaviour with simple probability.
– There may be little or no data to help inform the initial probability values27.
– Each person should really be understood and evaluated individually (ie. assess their intent

and resilience to attack separately).
• It may be necessary to enrol the services of people unknown to the subject, people who are

recommended, or agencies whose reputation and resilience are not yet evaluated.
• It doesn’t incorporate other attackers into the model (other than through the probability of good

behaviour per person).
• It assumes that each participant will behave independently. However, if a person chooses to behave

inappropriately, they are also likely to attempt to change the behaviour of enough people to subvert
the system (eg. N − K people)28.

27Psychological studies could assist here, although it may still prove difficult to make predictions about individuals
without a lot of data, and a good understanding of their attitudes. Many variables can quickly change a person’s attitude,
eg. factors influencing motivation and loyalty of participants (including a common cause, common enemy, family ties, and
friendships), incentives built into the DPS, changing personal circumstances (including financial pressures, threats, bribery
and persuasion).

28Interactions between people in the network significantly complicate the matter, and are considered out of scope for this
thesis.

48

• It assumes that each period is independent - whereas if a person expresses inappropriate behaviour
in one period, it may also influence their behaviour in future periods. (Or perhaps they will be
removed from the network.)

7.1.2.2 Subjective logic The naive probability model has room for improvement. One solution is
to represent participants in a trust network using subjective logic.

As described in 2006 paper Trust Network Analysis with Subjective Logic [1], Jøsang, Hayward, and Pope
show how subjective logic can be used to represent trust relationships, and networks of trust relationships.

These relationships can be classified as:

• Direct functional trust in a proposition (ie. A’s belief that participant B will behave appropriately)
• Indirect functional trust (ie. B informs A how likely they believe it is that C will behave

appropriately)
• Direct referral trust (ie. A’s trust in B’s advice about C)

These are often described with a simple example:

Alice (A) needs a mechanic, and asks Bob (B) for his opinion about Eric (C). Bob holds a
direct functional trust opinion about Eric, and Alice has direct referral trust opinion about
Bob. Alice uses both of these opinions to form her own indirect functional trust opinion about
Eric.

This is illustrated in Figure 14.

Figure 14: Alice forms an indirect functional trust opinion of Eric

Further exploration of Jøsang’s 2016 book, Subjective Logic [2], shows how trust opinions and subjective
logic can be used to represent a network, and how it can be applied to reasoning about system reliability.
Further detail of this is provided in Appendix D.

The application of subjective logic is an interesting path to follow, but there are good reasons to treat it
as a limited, theoretical solution:

• Everything discussed assumes that each person in the participant network behaves independently.
• It offers no practical way to measure, determine, or estimate values for the trust opinions required

to reason about a network of people.

When building participant networks for a DPS, the user in the scoped scenario for this thesis is primarily
a journalist, and unlikely to apply complex mathematics to the problem. Rather, they are considered
likely to select people they know and trust to a high degree, or select an alternative system that does not
rely on people.

Regardless of these weaknesses, subjective logic is recognised as one way to reason about trust in a
network of people. It may not yet offer results that can compete with a subject’s intuition, but it is an
active area of research.

If K of N threshold solutions must rely on unknown persons, it may help to develop processes that can
identify weak members of a participant network, and to calculate how a given person’s trustworthiness
can affect the overall safety of the solution.

49

7.2 Aliveness checks
Systems that can determine whether a person is alive or dead must also contend with attackers who wish
to provide evidence disputing the truth.

The failure states for a DPS system, laid out in section 5.1.2, are:

• early release
• denial of service

Attempting to confuse the system by persuading it that the user is alive when they are not, or dead when
alive and well can lead a system to exhibit these failure states.

A variety of signals can serve as a proxy for the user’s well-being.

7.2.1 Classic authentication

Authentication with a secret (ie. a password), is a common solution to determining if the user is who
they should be.

In some DPS systems, ability to authenticate is considered a proxy for being alive and well. This means
that if a person fails to authenticate within a given time frame, they can be considered unavailable and
their secret should be released.

Authentication is a security task, and often interferes with what people are trying to do. In The Compliance
Budget: Managing Security Behaviour in Organisations [35], Beautement, Sasse and Wonham describe
the compliance budget as an amount of effort that people are prepared to spend on security tasks.

Provided the effort required to demonstrate that the user is alive is sufficiently small, they will continue
to do it. However, if this becomes difficult (eg. a slow, inaccessible, or unresponsive interface) or too
frequent, the user may decide it is not worth the effort. In the case of investigative journalism where the
user has other things to worry about and may not be able to suffer regular interruptions for complex
passwords, they may choose to use a different product.

Systems that rely on user secrets also need to consider the resilience of the user themselves. A sufficiently
robust secret-based authentication process may accidentally incentivise an attack on the user to learn
their password and disarm the system. Figure 15, a comic strip reproduced from xkcd.com, illustrates
this point neatly.

Figure 15: xkcd: security [36]

7.2.2 Biometrics

Biometric technologies are employed by a wide range of consumer and enterprise devices to authenticate
the user. An arms-race is underway between crackers (wishing to create false positive inputs with
increasingly sophisticated deceptions) and manufacturers (wishing to prevent this with increasingly
sophisticated detections, able to observe identities and signs of life).

For the purposes of this thesis, it is important to note that:

50

• A biometric signal alone may not be reliable evidence of aliveness. Some sensors are more vulnerable
than others29.

• Implementations that use biometrics as a proxy for aliveness should understand how these signals
could be falsified.

• A remote device that captures such a signal ought to have a means to attest that it has not been
tampered.

Tamper resistance and attestation are features of trusted computing, discussed in section 7.3.1.

7.2.3 Human judgement

Humans are thought to be reasonably good at judging whether they have recently had an authentic
interaction with someone who is alive and well. However, technology is making rapid progress with
techniques that can successfully deceive them.

Originally called the Imitation Game, and proposed by Alan Turing in 1950, the Turing Test is a
competition style event to determine whether conversational chatbots can convince a panel of judges that
they are human. To pass, the software must deceive more than 30% of the judges.

A common critique of the Turing Test, that it “relies solely on the ability to fool people” and so is a
“sorely inadequate test of intelligence” [37], increases its relevance to this thesis.

In Hidden interlocutor misidentification in practical Turing tests [38], 2010, Shah and Warwick note that,
at the 18th Loebner prize event30 in October 2008, a team of invited judges from the University of Oxford
correctly distinguished humans from bots with a success rate of only 56%.

The quality of chatbots has improved since 2008 and is expected to continue to improve. Similarly, the
ability for bots to simulate the appearance of human voice and video has been steadily improving.

In 2017, a startup called Lyrebird (now owned by Descript31) developed and demonstrated [39], a
technology able to mimic human voices and give them new speech. Although the demo clips are limited,
this technology is expected to have improved since first debut.

In 2018 Google Duplex [40], a feature designed for their assistant product, was demonstrated placing a
call to a salon to book an appointment. The recipient of the call did not seem to detect that they were
talking with software. Google Duplex, as described by the team, operates in a tightly defined domain -
and cannot carry out general conversations, yet. It would not be expected pass the Turing Test without
strong constraints on topic.

It is possible to deceive humans with falsified video, at least for a short period of time32 as seen with
projects such as DeepFake or Avatarify [42]. The quality of these deceptions is expected to improve over
time.

Humans are also susceptible to a number of possible attacks (often referred to as social engineering):

• Deception
• Persuasion
• Intimidation
• Blackmail

When relying on people to decide if someone is alive and well, there are a variety of strategies available to
help mitigate the risks that they may not behave as required. For discussion of this, see section 7.1.

7.2.4 Paralysis proofs

Paralysis proofs are designed to manage the risk of group collusion. In a scenario where a group of people
share control of a cryptocurrency fund with a K of N threshold system, it is possible for members of the
group to collude, declare that one of them is no longer available, and misappropriate the funds.

29For instance, capacitive fingerprint readers are better equipped to detect the capacitive properties of live human fingers,
whereas ultrasonic or optical fingerprint readers may be vulnerable to prosthetics that capture and reproduce the ridges on
a finger.

30The Loebner Prize for Articificial Intelligence is a Turing Test event where bots are submitted and tested in a competitive
environment.

31Unfortunately, Lyrebird’s original demonstration is not available through the Descript website.
32Short video Fake Elon Musk joined the Zoom call [41], from 2020, is a perfect example of this.

51

Paralysis proofs rely on properties of cryptocurrency blockchain, and smart contracts, to offer a solution
that allows N parties to govern the spend of an amount of cryptocurrency.

In Paralysis Proofs: Secure Dynamic Access Structures for Cryptocurrency Custody and More [3], Zhang,
Daian and Bentov describe handing a fund to an account controlled by a smart contract or SGX enclave.

If one party, the missing party, is believed dead, the remaining parties issue a challenge. The missing
party may then provide evidence that they are still alive, by spending a small amount (known as the life
signal), which in turn prevents action being taken despite a consensus from the remaining parties. This is
illustrated in figure 16.

Figure 16: Paralysis proof: t2 relies on UTXO0 & UTXO1

For a detailed description of Paralysis Proofs, see Appendix E.

There are some risks associated with this:

Remaining parties could issue any number of challenges unless properly constrained by the SGX, and so
could overwhelm the missing party (or issue a challenge at a time when they know the missing party
will be unavailable). If they cannot respond to every challenge (assuming that the system does not have
mitigations in place for such a high frequency of challenges).

Paralysis proofs deal with the management of funds, however Dead Person Switches deal with secrets.
Cryptocurrency blockchains operate in full public view, and are not suitable for storing secrets.

7.2.5 Inactive account managers

Inactivity of a digital account, or a set of accounts, might also qualify as evidence of a person’s death.

An example system that uses this is Google’s Inactive Account Manager (IAM) [12]. It allows users to
choose who is granted access to their data after a number of months inactivity (or if the account and its
data should be deleted).

It’s intended to help a person plan to bequeath control of their digital assets after their death (or loss
of capacity). It has the advantage of being able to rely on Google’s authentication facilities - expected
to steadily improve over time, as Google are highly incentivised to remain at the forefront of identity
assurance, in order to properly serve their ecosystem of tools.

The IAM is an example where the motivation of the operator is reasonably clear. Google rely on their
reputation for business. They have many products that rely on secure storage, and an authentication
process that’s resistant to attack. It is reasonable to suppose that the IAM also benefits from the
maintenance of these shared systems. Incentives pose an important aspect of systems that rely on trusted
third parties.

52

Another example of a succession plan is GitHub’s Deceased User Policy [18], and documentation describing
how a user may nominate a successor [13].

An appointed successor can manage your public repositories after presenting a death certificate
then waiting for 7 days or presenting an obituary then waiting for 21 days.

Under this scheme, GitHub require that the successor present documentation to the effect that a person
has passed away and then wait for a predefined period. During this time, the account owner themselves
have an opportunity to present evidence that they are still alive - but the core of this policy relies on a
user’s trust in their chosen successor.

7.2.6 Evidence

As illustrated by the GitHub Deceased User Policy above, documentation (such as a death certificate, or
an obituary) may provide some level of assurance that a person has passed away.

Assurance of the legitimacy of documents is a difficult proposition, particularly where documents are
physical and cannot be digitally signed.

Some documents have security features designed into their physical attributes. Good examples of this
are the security features built into UK passports - used to ensure that the document is genuine, and
has not been tampered. Passports also have the advantage of carrying an NFC chip able to present a
digitally signed document that contains the same attributes as the printed passport. Validation of these
security features is described in the UK Government’s Good Practice Guide 45, How to prove and verify
someone’s identity [19].

In the UK, physical death certificates do not have strong security features. However, they are (increasingly)
supported by a programme of digitisation underway at the General Registry Office, providing an
authoritative source of live event records. The Life Event Verification Service [43] provides data about
recorded births, marriages and deaths.

The ability to validate a document could help where an attacker is attempting to cause an early release
by presenting a false death certificate.

NB. While the General Registry Office provide information about registered deaths [44], and a number of
databases are made available to commercial companies, the LEV service currently appears to be only
available to government departments.

If GitHub have a facility to validate death certificates, or seek assurance from the user themselves that
they are still alive, this fail state can be mitigated.

7.2.7 Data protection regulations

Under European and UK law, General Data Protection Regulations [20] (GDPR) dictate a number of
requirements to protect a user’s right to control their own data.

GDPR defines person data in relation to a “natural person” [45] - indicating that its scope does not cover
data relating to “legal persons” such as companies. An important caveat of this is that the person must
be alive. Protections for personal data do not extend to the deceased.

GDPR does not specify how a service should assure themselves that a person is alive, or define levels of
assurance for this.

GDPR’s disinterest in data after death presents a decision for the subject. They must select organisations
they trust to control and process their data. Clearly defined policies go a long way to providing assurance
of the intent of these organisations, even if they may be difficult to enforce after death.

7.3 Confidential computation
This thesis defines a requirement for confidentiality:

A DPS must keep a user’s secret confidential until it determines it is appropriate to release
the secret (confidentiality).

53

There are a number of means by which software can keep secrets - through encryption or the application
of security controls to prevent intruders, eavesdroppers, and leaks.

7.3.1 Trusted Computing

In The Ten Page Introduction to Trusted Computing [4], 2008, Andrew Martin describes the concept of
Trusted Computing, and some of the reasoning behind architectural decisions it incorporates.

Technologies that implement trusted computing offer a way to detect alterations to the operating system,
or the presence of malicious code that could produce unwanted behaviour. In turn this makes it possible
to mitigate the risk of attacks that can modify the code of the DPS - causing it to alter (or destroy) the
content of the secret, leak the secret, or fail to release the secret when required to do so.

7.3.2 Trusted Platform Module (TPM)

Computing systems are built in layers, from the hardware, CPU, through BIOS, operating system, and
applications. This is illustrated in figure 17, reproduced from Trusted Computing Infrastructure [46],
delivered by David Grawrock in 2019.

Figure 17: Hardware and operating system layers in an Intel CPU, reproduced from Grawrock [46]

Underpinning much of Intel’s trusted computing architecture, and now a required component for Windows
11, is a product called the Trusted Platform Module (TPM). The TPM is responsible for measuring
and attesting to each step of a system’s boot sequence - so providing guarantees of the integrity of the
hardware’s microcode, BIOS, and operating system.

For more detail on the TPM, see Appendix F.

7.3.3 Trusted Execution Environment (TEE)

Trusted Execution Environments offer opportunities to execute code in an environment that is protected
from other software on the system. Code running in a TEE is expected to behave correctly and to retain
its secrets, even if the operating system is compromised. This immediately lends itself to the requirements
of a DPS, as it offers guarantees around the integrity of the code, and the confidentiality of the secret.

7.3.3.1 Intel SGX The design principles behind SGX are intended to provide trusted enclaves,
managed by Intel CPUs, that are reliably isolated from all other software running on a system. This is
illustrated in figure 18, also reproduced from Grawrock [46].

An SGX-enabled application is divided into an untrusted portion, and a trusted portion comprising 1 or
more trusted enclaves, managed by SGX. An SGX enclave contains private data and code - inaccessible,
even to the rest of the application, and a well-defined interface for calling the code.

54

Figure 18: Hardware and operating system layers including SGX, reproduced from Grawrock [46]

For more detail on Intel SGX, see Appendix F.

7.3.4 Homomorphic encryption

Under normal circumstances, data must be decrypted to operate on it, leaving it vulnerable to exploits
that could compromise its confidentiality. Fully Homomorphic Encryption (FHE) is a form of encryption
that permits operation on encrypted data without first decrypting it. Subsequent decryption of the data
then results in the same output as if the operations had been applied to the decrypted information.

This does not immediately lend itself to the use case of a DPS - as the secret is not manipulated. However,
it may also be possible to apply FHE to the storage and execution of code without decrypting or exposing
it. In How to Run Turing Machines on Encrypted Data [21], 2013, Goldwasser et al. describe what is
required to run a turing machine33 over encrypted data. (This replaces the need to represent algorithms
as circuits for homomorphic encryption techniques.)

FHE is not yet considered ready for general use cases, as it is still extremely inefficient. It is an active
area of research. Should efficiencies be found, this technique may provide a provably safe alternative to
the use of TEEs (or it may find its way into future implementations of TEE technologies).

7.3.5 Source code protection

There are compelling arguments to suggest that the code of a DPS itself should not be confidential
(although its integrity remains essential).

There are a number of recognised benefits to open source software including automated vulnerability
detection34, community and researcher scrutiny, and lower cost of testing and improvement.

7.4 Guaranteed execution
Availability is an essential property of a DPS solution. There are a variety of ways to ensure that code
will be executed - uninterrupted, and unaltered.

7.4.1 Hardened devices

Hardening devices is a complex topic, and a full exploration of this is outside the scope of this thesis.
However, there are a number of existing techniques and technologies which can help mitigate the risk of a

33ie. general purpose computation.
34These tools are particularly helpful when analysing software libraries imported into projects - and help to mitigate

supply-chain attacks found in known versions of libraries with vulnerabilities.

55

physical attack. If a single, hardened device were considered the most appropriate option to operate a
DPS, a mobile phone might be a good candidate:

• They are almost never out of the company of a person who is motivated to keep them safe35.
• They are in almost constant use for a wide number of purposes.
• They have a lengthy battery life when disconnected.
• They connect to a highly available mobile network.
• Many contain sophisticated security features, such as HSM-like capabilities36 for storing fingerprint

data and private keys, and verified boot processes37.

However, if the subject of a DPS is attacked, and their phone is operating as their DPS, it is reasonable
to assume that the attacker may investigate their phone, and very likely disable it - even if they are not
expecting it to contain a DPS. Many mobile phones are quickly disabled after theft to prevent recovery
through tracking tools.

It is also reasonable to assume that even phones designed for security are not protected against nation
state attack. A large amount of organised crime was interrupted in 2020 when it was revealed that police
across Europe had successfully infiltrated EncroChat [48] - an encrypted communications system built
with custom devices.

In the Journalist’s Resource for Safe and Ethical Reporting [23], Reporters San Frontières advise:

“Rule 2: Be wary of smart phones.”

Noting that:

“A smartphone can be treacherous. It constantly emits large amounts of data to enable it to
connect to mobile networks and the Internet, which can easily be used to locate you. If it falls
into unknown hands, even for just a few minutes at a checkpoint or customs post, malicious
software can be installed which can transform it into a bugging device. This can make it your
worst enemy.”

7.4.2 Distributed computing

Distributed computing networks perform a variety of problem solving tasks - there are a number of
prolific networks, including those for distributed science (SETI@home, folding@home), and vast networks
concurrently mining for cryptocurrency, maintaining blockchain ledgers, and executing smart contracts.

There are a number of advantages to adopting a distributed computing mechanism that already exists:

• Networks with an established community are difficult to attack. In most cases, a majority of
nodes will need to be compromised before the network becomes unreliable or unavailable. This is
considered out of reach of all but the most resourced attackers - and likely to draw a lot of attention
to the attack.

• Participants are already motivated to continue operating the distributed network.
• If participants are unaware of the task they’re executing, an opportunity arises to conceal the

activity of the DPS.

7.4.2.1 Distributed science The distributed computing effort SETI@home was designed to process
signal data from radio telescopes in the search for evidence of alien life. It was initiated in 1999, and
concluded in 2020. At its peak, it registered as one of the most powerful supercomputers on the planet.

The folding@home project is currently running and claims to have “created the most powerful super-
computer on the planet” [49]. It is primarily used for simulating potential folding configurations for
proteins.

Although highly available, some properties of these networks rule them out as an appropriate distributed
computing network for a DPS:

35Per ONS Property Crime data, [22, year ending March 2020 dataset, tables 15 and 17], in the year ending March 2020,
of an estimate 48.6 million mobile phone owners, 325,000 experienced mobile phone theft.

36A hardware security module (HSM) is a physical tamper-resistant device that provides confidentiality for sensitive data.
For instance, an HSM is able to store private keys and use them to decrypt ciphertexts, or sign messages, without releasing
those private keys to the operating system.

37eg. Titan-M chips [47], built into Pixel phones (2018); or the Secure Enclave in iOS devices.

56

• They are designed to operate on open scientific data, and so do not need their operating data to
remain confidential. (Integrity is important, though.)

• They are single purpose networks, and cannot be repurposed without altering the agreement with
the users who donate computing resources.

7.4.2.2 Smart contracts Cryptocurrencies use blockchains as their ledger of transactions, which
provide guarantees about the atomic nature38 of operations (such as financial transactions), and a
permanent, non-repudiable record agreed by consensus. Some cryptocurrencies, such as Ethereum, also
allow instances of code, called smart contracts, to be stored on their blockchains and executed by their
network. There are a number of properties of smart contracts that Ethereum enforces:

• Like transactions, smart contracts are universally agreed by consensus, and atomic in nature.
• Smart contracts run on Ethereum nodes in an isolated virtual machine called the EVM.
• The cost (‘gas’) to run a smart contract is related to the resources it consumes when executing.

Smart contracts have a number of properties which are valuable to the implementation of a DPS:

• They are guaranteed to run. (Availability)
• They cannot be altered after being committed to the blockchain. (Integrity)
• Outputs, and state are affirmed by consensus. (Integrity)

However, although the EVM is specified as an isolated virtual machine, this cannot be completely
guaranteed:

• Each node may have its own EVM implementation.
• Each EVM has access to the code and state of the smart contract, in order to execute it.

This leads to an undesirable property:

• Smart contracts cannot protect the confidentiality of secrets39. (Confidentiality)

Further, it is not impossible to attack Ethereum [24] - and if a network were successfully compromised,
this would disrupt the guarantees made above. In a 51% attack, an attacker attempts to take control of
the majority of the computing power of the network. This gives them control over transactions - allowing
them to alter the order of, or cancel transactions (and re-spend the currency).

In “A survey of attacks on Ethereum smart contracts” [25], Atzei, Bartoletti and Cimoli describe a
number of vulnerabilities in smart contracts that could also be exploited.

As with all technologies, there are risks - and selecting a network that is resilient40 to host a DPS solution,
that relies on smart contracts, will offer the strongest chance of recovery and continued operation in the
face of an attack.

7.4.3 Durability

When selecting a platform and technologies for a DPS, continuity is an important consideration. A DPS
might be expected to endure the natural lifetime of a person.

The longest running distributed network described above is SETI@home, which ran from 1999 to 2020:
21 years. Others may last as long, or longer. In each case this is difficult to predict.

Many technologies have flourished and then disappeared since the dawn of computing. The question of
how to ensure that software will continue to execute in the future is a difficult one.

7.4.3.1 Blockchain smart contracts Cryptocurrencies are seen by some as a fad, others as a new,
decentralised way of conducting transactions which will last because of the unregulated benefits they
offer.

38Atomic transactions are considered to succeed or fail completely, no matter how many steps are involved.
39Even secrets encrypted for specific recipients are at risk of early release - as the intended recipients could obtain them

at any time by exploiting the EVM.
40Some schools of thought might suggest that a network such as Ethereum, which has experienced and recovered from

several large scale attacks like this, has developed resilience in response to threats like these.

57

As mentioned in section 6.2.4, cryptocurrencies that rely on proof-of-work mining activity consume vast
amounts of energy [50], posing an existential risk to the habitability of the world [34] over time. This is
now tracked at the Cambridge Bitcoin Electricity Consumption Index [51].

In a recent development, Ethereum have announced their intention to switch from mining to a new
technique called proof-of-stake [52]. They expect the change to be complete in 2022. This is estimated to
reduce power consumption from participants in the network by 99.9%.

This increases the likelihood that smart contracts across the Ethereum network will endure, as it becomes
more affordable, more practical, and less environmentally damaging to participate in the network’s
distributed computing efforts.

7.4.3.2 The Domesday Project In 1986, the BBC published the Domesday Project - a large data
collection project containing articles about local geography, social issues, daily life across the UK, maps,
photographs, statistical data, virtual walks, OS maps, colour photographs and the 1981 census data.

By 2002, it was reported that the hardware required to view the Domesday project had become obsolete
[53] - rendering the information unreadable. This serves to illustrate how difficult it is to build a piece of
software that successive generations of new hardware can execute.

A DPS system must attempt to do this in the face of numerous unanticipated changes to networking,
human interfaces, software and hardware. It must be patched and maintained to ensure that 0-day
vulnerabilities are not exploited as they are discovered.

7.4.3.3 Legacy systems Some extremely old systems, such as banking mainframes, the Police
National Computer (introduced 1974), or software written in COBOL (developed 1959), have proved very
long lived. However, maintenance or replacement of these systems is an expensive endeavour41. Today
there are a diminishing number of COBOL developers, and banks are (finally) realising the benefits of
migrating away from (and releasing themselves from the risks of) their failing mainframe hardware and
software.

7.4.3.4 Emulation Emulation of older hardware offers a possible solution, although in security
sensitive applications such as DPS it comes with risk. Unpatched vulnerabilities from the original system
will still be present and this must be reflected in risk analyses and mitigations.

7.4.3.5 Institutions A long running institution dedicated to maintaining the software and hardware
for a DPS may prove a reliable option. Wikipedia provides a list of oldest institutions in continuous
operation [55]. Of course, many of these have survived the test of time without building dependencies on,
or developing expertise in, modern technologies. It may not be practical to persuade such an organisation
to host a DPS system (many are religious institutions, or specialised companies). However, options exist
such as academic institutions, or modern technology companies that are now considered “too big to fail.”

7.5 Publishing mediums
It is important that a secret revealed by a DPS is distributed in a reliable way, preserving integrity and
ensuring availability - either as a public resource, or as a message sent to specified individuals.

Thought should also be given to resilience of a chosen medium:

• Is it susceptible to a denial of service attack?
• Can information be altered?
• Is it managed by a single operator?
• Is that operator resilient to attack?
• Which legislation governs that operator?

41Attempts to replace the Police National Computer were reported in 2020 as £45m over budget, years late, and not
expected to show results until 2025 [54].

58

7.5.1 Public forums

Public forums are a widely available option for publication, and worth considering.

The motives of the operator are important in deciding whether to trust a forum with the publication of a
valuable secret:

Some are operated by organisations that prioritise free speech, and may resist attempts to censor the
secret. A good example of this is 4chan - a site designed to facilitate anonymous comment.

There are a number of advantages to sharing the secret with a public forum:

• High volume of traffic means the secret will be widely distributed.
• Some may be too poorly curated to detect or remove sensitive content quickly.
• Some sites have developed resistance to censorship - locating their hosting in countries with poorly

enforced copyright and libel laws.

For sites such as these, even if the original post is eventually censored, many people will have seen the
information, and some of those may copy and re-post it - making it very difficult to censor. This is known
as the Streisand Effect [56], and is illustrated by the 2007 AACS Encryption Key controversy - a failed
attempt to censor a particular number used in the copyright mechanism for DVD players [57].

There are also risks: Anonymous forums often have a poor signal to noise ratio for truthful information,
and some sites have a high tolerance for discriminatory content, libel or abuse. The published secret may
not be taken seriously.

7.5.2 Direct communication

The simplest form of direct communication is email. A DPS solution may publish the subject’s secret by
sending it to pre-determined people.

There are advantages to this:

• The secret can be encrypted for the chosen recipients (eg. with PGP42), making it harder to
compromise a stolen secret.

• Chosen people can be tasked with acting on the information if they should receive it (perhaps by
bringing it to law enforcement to protect the subject, or initiating legal proceedings against the
threat).

There are also disadvantages:

• Risk is passed to the chosen recipients, who may also be at risk of attack.
– A switch will need to store metadata such as the email addresses of recipients. If successfully

attacked, this information can be used to identify them.
– Emails can be intercepted, and this can be used to determine the identities of these people.

• Email addresses change, and people may not be checking old addresses. Regular contact to ensure
they are still using the account may also draw the attention of threats.

7.5.3 Trusted channels

Some organisations, such as the Good Law Project43 or Wikileaks44 offer methods for the anonymous
submission of whistleblowing information.

Choice of organisation is important, as their moves must be understood. Some are operated by journalists
and organisations with the capability to investigate, present, and publish the information safely.

Wikileaks has drawn a lot of attention in recent years for its activity publishing information about national
intelligence services [58].

42OpenPGP is an open standard for identity and encryption: https://www.openpgp.org/, GnuPG (GPG) is one of those
implementations: https://gnupg.org/

43The Good Law Project tip-offs: http://goodlawproject.org/got-a-tip-off/
44Wikileaks submissions: https://wikileaks.org/#submit

59

7.5.4 Distributed File Systems

Another way to achieve highly available distribution is through a distributed file system (DFS).

The Interplanetary File System45 (IPFS) is a DFS, and the most commonly cited example amongst the
existing systems reviewed for this thesis. Content is distributed amongst participating nodes on the
network, so making it difficult to lose or censor.

IPFS is built as a peer-to-peer network with a common protocol. Files are stored as chunks with a
cryptographic hash and content identifier (CID), based on the hash of the file. Nodes on IPFS cache
content as they retrieve it, and serve it on - so increasing the capacity to deliver more popular files
(similar to the way BitTorrent clients operate).

IPFS maintains the integrity of files available on it through cryptographic hashes - and when a file changes,
the CID changes too - creating a new version.

A DPS could store its encrypted secret on IPFS, so ensuring that it is accessible and available to any user
who wishes to cache and inspect it. Then, should the DPS need to release the key, it can also push this
to IPFS (and optionally issue a decrypted version of the payload). All of these files will then be publicly
available, and their availability is difficult to disrupt.

45Interplanetary File System: https://ipfs.io/

60

8 Implementation - Stage 3: Propose and evaluate designs
Three new designs are proposed in subsequent sections, each illustrating a different approach to the build
and operation of a DPS.

Table 43: Proposed design summaries

Section Summary

1 8.1 A simple design built with micro-services for a cloud hosting provider.
2 8.2 A dApp built with an Ethereum smart contract that relies on the SECRET

network to manage the subject’s secret.
3 8.3 A passive encryption system that allows a blockchain proxy for proof-of-life to

serve as the decryption witness.

These designs are chosen to represent distinct strategies for the implementation of a DPS. They are
intended to meet as many of the requirements for a DPS laid out in section 5.2 as possible.

For each design:

• The premise is explained.
• Relevant information security research and components are presented.
• The design is described.
• Diagrams are presented to aide visualisation.

Design 1 serves to illustrate a micro-services architecture using classic system design components. For
that design a risk analysis is conducted, highlighting weaknesses in the design. This serves as a point of
reference.

As described in the methodology, section 4.5, designs 2 and 3 rely on one or more blockchains, and so
the systems they represent have boundaries that encompass large distributed computing networks with
complex properties. Rather than developing a risk analysis for them, each design is evaluated against the
requirements for a DPS:

• Findings for each requirement are presented.
• Potential mitigations for found risks are offered.
• Further considerations are discussed.

In section ??, these designs are compared to discuss strengths and weaknesses in the context of all
proposed systems.

8.1 Design 1: Hosted micro-service DPS
8.1.1 Premise

This design represents a DPS constructed as a series of micro-services, for a cloud based hosting
environment.

The service is designed to be operated by a single operator, on a cloud platform such as Amazon Web
Services, Microsoft Azure, or Google Cloud.

It is intended to support multiple subjects, each of whom may construct one or more switches with a
secret, and then submit their own aliveness signals to the system.

Careful application of design principles, and division of the services into a number of security zones, help
to ensure that the service is resilient against a variety of different attacks.

The National Cyber Security Centre (NCSC) provide a number of secure design principles [59]. Some key
principles lifted from the document guide this design:

• Design for easy maintenance. The system is designed to be clear to understand, with a number
of simple micro-services that each performs a simple task.

• Use a zoned or segmented network approach. The system deliberately zones the user-write
operations away from the system-read operations - so that a compromised process is not in the same
security zone as, or able to directly reach, its opposite. The databases themselves are protected

61

by processes as small as lambdas, responsible for a single read or write operation. Access to each
lambda is also controlled.

• Reduce attack surface. The system features a limited number of external inputs, and these are
indicated clearly in the design. Users may only perform a small number of operations. Each endpoint
in a zone that accepts inputs from a less-trusted zone is protected by a firewall to ensure that
inputs come only from expected services, and only to expected endpoints. Additionally, read-only
endpoints and write-only endpoints limit the possibility for unexpected operations on data.

• Transformation, validation, and safe rendering. The system transforms all inputs from the
user before sending them to endpoints in more trusted zones. Inputs are validated before use.

8.1.2 Design

Figure 19 illustrates the architecture of this system.

Figure 19: Design proposal: micro-services architecture

The design features a number of micro-services divided into several trust zones:

• DMZ. The demilitarised zone. Public-facing web applications reside here, protected by a firewall,
and accept user input. They validate and transform this input before passing it into the DPS
input zone.

– Switch creation application. Accepts information required to construct a new switch,
including the secret a user will attach to their aliveness evidence.

– Aliveness check-in application. Accepts an assertion from a user, accompanied by their
secret, to indicate they are currently alive.

• DPS input zone. Services that represent the logic of user actions (create a switch, or provide
aliveness evidence) operate here. They accept and validate input from the DMZ, and make calls to
individual lambdas in the DPS data zone.

• DPS data zone. The data zone contains two data stores, an HSM, and several lambdas control
operations on those stores.

– Operational data store. Contains switch definitions (including the public key required to
validate a subject’s aliveness evidence, and the identity of the subject’s secret).

– Secret store. Contains user secrets, encrypted at rest by the HSM.
– HSM. The HSM (not visible, but accessible to each lambda in its zone with its own access

rules) contains the keys and the capability to encrypt and decrypt the subject’s secret.
– Lambdas. The following operations are defined as lambdas, which can operate on the data

store:
∗ OD Create. Operational data creation for the initialisation of a DPS.
∗ Secret write. Encryption and storage of the subject’s secret during initialisation of a

DPS.
∗ Aliveness record. Storage of a signed piece of evidence indicating that the subject is

alive at a given time.
– OD read. The read and verification of operational data when checking for a subject’s aliveness.
– Secret read. The read and decryption of the subject’s secret for publication.

62

• DPS check zone. Services here are periodically activated by a recurring trigger to check for
subject aliveness and if necessary extract and publish a secret.

– Aliveness check service. Periodically checks the operational data to determine if a subject
has missed a check-in, and trigger the secret extractor service if required.

– Secret extractor service. Retrieves the subject’s secret, and passes it to the publishing
service.

– Publishing service. Transmits the secret provided to a chosen publishing medium. This
could be an email address, or a public and highly available service, such as twitter.

8.1.3 Risk analysis

Threats to a DPS are listed in section 5.4.2.

General informational assets stored by a DPS are listed in section 5.4.1, followed by determination of the
impact of loss of security properties for those assets in section 5.4.3.

Additional assets related to this design are described below.

Tables for this risk assessment exercise are available in Appendix G.

8.1.3.1 Additional assets and impact Table 44 lists assets specific to this design, and evaluates
the impact of loss of their CIA46 properties.

Table 44: Additional assets and impact for a micro-services design

Asset Name Description CIA Impact Level

A005 Architecture Data controlling the design of the
system, creation of micro-services,
databases, trust zones, rules for
permitted connections between
micro-services.

I If altered, the system’s behaviour
could be adjusted, resulting in the
loss of confidentiality of subject
secrets, or loss of availability of the
system.

High

A006 Administration
account

Account and credentials required
to construct or modify system
architecture.

C If confidentiality of the credentials
is compromised, any attacker can
alter the system’s architecture and
change any part of its behaviour.

High

A006 Administration
account

Account and credentials required
to construct or modify system
architecture.

IA If access to the account is lost (ie.
if the bill cannot be paid, the
credentials are modified without
knowledge of the operator, or the
cloud hosting provider prevents
access for some other reason),
either: 1. the service will be shut
down (in which case, switches
become unavailable), or 2. it
becomes difficult to patch or
update the service. Eventually
exploits will be found that can be
used to attack it.

High

A007 DMZ services,
input zone
services, data
zone services

Web services in the DMZ
responsible for creating new
switches, and for accepting
evidence of subject aliveness;
services in the input zone that
coordinate creation of switches and
recording of subject aliveness
evidence; services in the data zone
that store operational and secret
data, and share it with the check
zone.

IA If services in any of these zones are
compromised, it may be possible to
alter the behaviour of the service -
either to make it unavailable, or to
reject user input. It may also be
possible for a compromised service
to record the user’s credentials and
use them to play back false
aliveness evidence at a later date.

High

A008 Subject aliveness
evidence secret

A secret that the subject shares
with their aliveness assertion.

C If this becomes known, an attacker
may use it to submit false aliveness
evidence.

High

A009 Data zone
services

Services in the data zone that store
operational and secret data, and
share it with the check zone.

C If the data in the secret store is
released, it will be encrypted with
a key retained in the HSM, and so
of little use to an attacker.
However, operational information
(pseudonyms and data used to
verify aliveness information) may
be uncovered and this could be
used to manipulate the switch into
accepting false aliveness
information.

Medium

46CIA: Confidentiality, Integrity, Availability

63

Asset Name Description CIA Impact Level

A010 HSM The HSM in the data zone contains
keys required to decrypt subject
secrets.

C=A If the HSM is compromised it is
expected to render itself
inoperable. This results in user
secrets becoming unavailable. If
this can be detected, users will be
forced to resubmit their secrets in
order to restore operation.

Medium

A011 Check zone
services

Services in the check zone
responsible for checking aliveness,
extracting secrets, and publishing
if necessary.

IA If the secret extractor is
compromised, it could lead to loss
of confidentiality of the user’s
secret. If either service is altered
or disabled, it could lead to the
service becoming unable to carry
out secret extraction and
publishing if the subject becomes
unavailable.

High

A012 Operator The person or persons that operate
the system

IA If the operator is attacked or
compromised in some way, the
could be persuaded to release
secrets permitting an attacker to
take control of the system, learn
subject secrets, or shut down the
service.

High

As the purpose of the system is to store subject secrets and to release them when required, and because
the impact of failing to do so could put a person at risk of attack, almost every asset here results in a
high or medium risk should it lose CIA properties.

8.1.3.2 Vulnerabilities A number of basic vulnerability types are apparent across the system, and
presented in Table 45.

Table 45: Vulnerability types for a micro-services design

Vuln ID Vulnerability
Assets
affected Description Vuln level

V001 Human weakness A012
(operator)

Staff at the cloud platform provider, or the
operator, may be vulnerable to bribery, threat, or
disgruntled staff may act on malice. Humans are
vulnerable to duress, and also make mistakes like
having guessable passwords.

M

V002 Configuration errors A005 (archi-
tecture),
A007
(services),
A009
(services),
A010
(HSM),
A011
(services)

Mistakes or deliberate errors in the configuration
for security appliances (such as the firewall), any
backups, micro-services or the HSM.

M

V003 Coding flaws A007
(services),
A009
(services),
A011
(services)

Weaknesses in the micro-services themselves. M

V004 Unpatched software
vulnerabilities

A007
(services),
A009
(services),
A010
(HSM),
A011
(services)

Managed micro-services are considered to be at low
risk from OS patching. However, the micro-services
themselves will need regular patching as new
vulnerabilities are discovered.

M

V005 Default passwords A006 (admin
acct), A010
(HSM)

Accounts used to manage infrastructure with
default passwords.

H

V006 Physical vulnerability of
data centre

A005 (archi-
tecture),
A007
(services),
A009
(services),
A010
(HSM),
A011
(services)

The data centres administered by large cloud
providers are considered to have adequate security
in place to ensure only authorised staff may enter
for good reasons.

L

V007 Capacity limits of
architecture

A007
(services)

It may be possible to overwhelm the service’s
public facing endpoints.

M

64

Vuln ID Vulnerability
Assets
affected Description Vuln level

V008 Legal compulsion A012
(operator)

Staff at the cloud platform provider, or the
operator, are more likely to choose cooperation
with a legal request over a hefty fine or a custodial
sentence.

H

Each vulnerability represents a way that one or more asset could be compromised in the system.

8.1.3.3 Threats Threats are estimated by combining information about the vulnerability level, and
the capability of threat actors. These are evaluated in Table 46.

Table 46: Threats for a micro-services design

Threat
ID Threat Actor Motive Cap.

Target
Assets Method Freq. Notes

T001 Denial of
service

Nation
state
(extra-
legal
means)

Prevent the
service from
operating, to
protect their
own secrets

H A007
(services)

Overwhelm the
front-end
services with
requests.

L Considered Low
frequency in some
democracies, but far
higher (or even
automatic) in some
countries.

T002 Denial of
service

Organised
crime

Prevent the
service from
operating, to
protect their
own secrets

H A007
(services)

Overwhelm the
front-end
services with
requests.

L This may be
considered
infrequent, as
organised crime are
likely to have one-off
reasons for doing
this.

T003 Denial of
service

Activists Prevent the
service from
operating
because it is
perceived as
unethical to
withhold
evidence of
wrongdoing

M A007
(services)

Overwhelm the
front-end
services with
requests.

M This could form a
part of an ongoing
campaign if activists
are sufficiently
motivated.

T004 Exfiltrate
secrets

Nation
state
(extra-
legal
means)

Learn secrets
stored by
dissidents or
investigative
journalists
investigating
government
wrongdoing

H A001-A004
(informa-
tion), A009
(data
zone),
A011
(check
zone),
A012
(operator),
A006
(admin
acct)

Capture and
decrypt
information held
in the secret
store: either
through learning
or guessing the
administrator
credentials, by
obtaining the
administrator
credentials
through duress,
or by exploiting
vulnerabilities
in the
micro-services.

M This is an attractive
target for an
intelligence agency
that wishes to control
dissidents and
investigative
journalists.

T005 Exfiltrate
secrets

Organised
crime

Learn secrets
stored by
enemies or
people they wish
to blackmail /
Sell the
information or
accept payment
not to release it

H A001-A004
(informa-
tion), A009
(data
zone),
A011
(check
zone),
A012
(operator),
A006
(admin
acct)

Capture and
decrypt
information held
in the secret
store: either
through learning
or guessing the
administrator
credentials, by
obtaining the
administrator
credentials
through duress,
or by exploiting
vulnerabilities
in the
micro-services.

L This may be
considered
infrequent, as
organised crime are
likely to have one-off
reasons for doing
this.

65

Threat
ID Threat Actor Motive Cap.

Target
Assets Method Freq. Notes

T006 Exfiltrate
secrets

Activists Embarrass the
service, and leak
secrets because
it is perceived
as unethical to
withhold
evidence of
wrongdoing

M A001-A004
(informa-
tion), A009
(data
zone),
A011
(check
zone),
A006
(admin
acct)

Capture and
decrypt
information held
in the secret
store: either
through learning
or guessing the
administrator
credentials, or
by exploiting
vulnerabilities
in the
micro-services.

L Activists are
considered to have
limited resources to
do this repeatedly,
and may not need to
- as the goal of
reputational damage
to the service would
be achieved if
sufficiently many
subject’s secrets were
compromised.

T007 Destroy
secrets

Nation
state
(extra-
legal
means)

Prevent
evidence of
government
wrongdoing
from being
released

H A001-A004
(informa-
tion), A009
(data zone)

Delete
information held
in the secret
store: either
through learning
or guessing the
administrator
credentials, by
obtaining the
administrator
credentials
through duress,
or by exploiting
vulnerabilities
in the
micro-services.

L Considered Low
frequency in some
democracies, but far
higher (or even
automatic) in some
countries with less
regard for rule of law.

T008 Destroy
secrets

Organised
crime

Prevent
evidence of their
own wrongdoing
from being
release, or make
it possible to
attack an enemy

H A001-A004
(informa-
tion), A009
(data zone)

Delete
information held
in the secret
store: either
through learning
or guessing the
administrator
credentials, by
obtaining the
administrator
credentials
through duress,
or by exploiting
vulnerabilities
in the
micro-services.

L This may be
considered
infrequent, as
organised crime are
likely to have one-off
reasons for doing
this.

T009 Destroy
secrets

Activists Prevent the
service from
operating
because it is
perceived as
unethical to
withhold
evidence of
wrongdoing

M A001-A004
(informa-
tion), A009
(data zone)

Delete
information held
in the secret
store: either
through learning
or guessing the
administrator
credentials, or
by exploiting
vulnerabilities
in the
micro-services.

L Activists are
considered to have
limited resources to
do this repeatedly,
and may not need to
- as the goal of
reputational damage
to the service would
be achieved if
sufficiently many
subject’s secrets were
deleted.

T010 Install
malware

Nation
state
(extra-
legal
means)

Make service
inoperable, with
plausible
deniability

H A007
(services)

Exploit
vulnerabilities
in the
micro-services
to install
malware on the
various hosted
services.

L This is difficult to do
on a managed
micro-services
infrastructure - and
once done, there
would be little
benefit to doing it
again, as the service
would be disabled.

T011 Install
malware

Organised
crime

Exploit
computation
resource to
make some
money, or
ransom back the
capability to
operate

H A007
(services)

Exploit
vulnerabilities
in the
micro-services
to install
malware on the
various hosted
services.

M This is difficult to do
on a managed
micro-services
infrastructure, but
organised crime are
incentivised to do it
repeatedly if they
can.

T012 Install
malware

Script
kiddies

Excitement,
reputation

L A007
(services)

Exploit
vulnerabilities
in the
micro-services
to install
malware on the
various hosted
services.

M This is difficult to do
on a managed
micro-services
infrastructure, but
persistent attempts
are to be expected by
any service.

66

Threat
ID Threat Actor Motive Cap.

Target
Assets Method Freq. Notes

T013 Weaken
secret
protections
by altering
architec-
ture

Nation
state
(extra-
legal
means)

Learn about
future secrets
and users

H A005
(architec-
ture), A006
(admin
acct)

Adjust the
architecture to
remove
protections for
secrets, or
install
additional
accounts that
can be used to
obtain secrets in
future, by
learning or
guessing the
administrator
password (or
obtaining it
through duress);
or by making
imperceptible
changes to the
architecture
designs and
waiting for the
operator to
refresh the
system from this
data.

L This activity can be
detected, and is not
considered the easiest
way to achieve the
same weakening of
the service’s secret
protections. However,
it may serve a
purpose and could be
quicker to implement
than legal
compulsions.

T014 Weaken
secret
protections
by
mandating
a backdoor

Nation
state (legal
means)

Learn about
future secrets
and users

H A005
(architec-
ture), A006
(admin
acct)

Take the
operator or
platform service
provider to
court, or
threaten to, to
incentivise them
to install a
backdoor (ie. an
additional
account), or
alter the
micro-services,
to make it
possible for a
government
body to obtain
the secrets
stored in the
DPS.

M Wide-reaching mass
surveillance
programmes (such as
Prism) have been
revealed in recent
years. Data collection
was achieved by legal
(and other) means.
New programmes
would be equally
hard to discover. It is
likely that major
providers are
collaborating with
law enforcement, or
intelligence agencies,
to some degree.

T015 Weaken
secret
protections
by altering
architec-
ture

Organised
crime

Learn secrets
stored by
enemies or
people they wish
to blackmail /
Sell the
information or
accept payment
not to release it

H A005
(architec-
ture), A006
(admin
acct)

Adjust the
architecture to
remove
protections for
secrets, or
install
additional
accounts that
can be used to
obtain secrets in
future, by
learning or
guessing the
administrator
password (or
obtaining it
through duress);
or by making
imperceptible
changes to the
architecture
designs and
waiting for the
operator to
refresh the
system from this
data.

L Organised crime may
not care if their
changes are
discovered provided
they can exploit them
reasonably swiftly.

T016 Shut down
service
with court
order

Nation
state (legal
means)

Prevent use of
the switch for a
variety of
reasons

H A001-A004
(informa-
tion), A006
(admin
acct), A012
(operator)

Take the
operator, or the
cloud platform
provider, to
court (or
threaten to) to
incentivise them
to halt the
account hosting
the DPS.

L Shutting down the
entire service seems
less useful to a nation
state than exploiting
it to gather
information.

67

Threat
ID Threat Actor Motive Cap.

Target
Assets Method Freq. Notes

T017 Fines for
switches
used for
blackmail

Law en-
forcement

Enforce
blackmail
legislation

H A012
(operator)

Take the
operator, or the
cloud platform
provider, to
court for alleged
use of the DPS
for blackmail.

M This could happen.
It is likely that
individual cases
would be dealt with,
ie. an individual DPS
might attract
attention of law
enforcement, and the
court case may
require only the
removal of an
individual switch.

T018 Fines or
jail for
refusing to
release
secrets

Law en-
forcement

Support
criminal
investigations,
incentivise
release of secrets
stored by people
engaged in
illegal activity

H A012
(operator)

Threaten the
operator with
fines, or a
custodial
sentence, to
incentivise them
to release
secrets
belonging to a
person of
interest.

L This is a more
extreme case, where
law enforcement wish
to learn the
information kept in
the switch.

The threats illustrate a number of different ways that threat actors may attempt to attack the system -
estimating their capability and the expected frequency of such attacks.

8.1.3.4 Risks Table 47 presents evaluated risks, showing calculated estimates for likelihood of success,
threat level, and risk level. These calculations are based on combinations tables described in section 4.5.1.

Risk prioritisations are derived from the (slightly biased) combination table shown in Figure 20.

Figure 20: Risk level and priority combination tables

Table 47: Risks for a micro-services design

Risk
ID

Threat
IDs

Vuln
IDs

Asset
IDs Risk Capability

Vuln
level

Likelihood
of
suc-
cess

Freq.
of at-
tempt

Threat
level Impact

Risk
level

Risk
prior-
ity

R001 T001,
T002,
T003

V007 A007 DoS attack by
overwhelming the
public facing
endpoints.

H M H L M M M 5

R002 T004,
T005,
T007,
T008

V001,
V002,
V005

A001-
A004,
A006

Exfiltrate or
destroy secrets by
guessing or
learning the
administrator
credentials.

H H H M H H H 1

R003 T004,
T005,
T007,
T008

V002,
V003,
V004

A001-
A004,
A009,
A011

Exfiltrate or
destroy secrets by
exploiting
vulnerabilities in
the
micro-services.

H M H M H H H 1

R004 T004,
T005,
T006,
T007,
T008,
T009

V001 A001-
A004,
A012

Exfiltrate or
destroy secrets by
learning the
administrator
credentials
through duress.

H M H M H H H 1

68

Risk
ID

Threat
IDs

Vuln
IDs

Asset
IDs Risk Capability

Vuln
level

Likelihood
of
suc-
cess

Freq.
of at-
tempt

Threat
level Impact

Risk
level

Risk
prior-
ity

R005 T010,
T011,
T012

V002,
V003,
V004

A007 Install malware
by exploiting
vulnerabilities in
the
micro-services.

H M H M H H H 1

R006 T013,
T015

V002,
V003

A005 Adjust the
architecture to
remove
protections for
secrets by making
imperceptible
changes to the
architecture files
and waiting for
the operator to
refresh the
infrastructure.

H M H L M M M 5

R007 T013,
T015

V001,
V005

A005,
A006

Adjust the
architecture to
remove
protections for
secrets by
learning or
guessing the
administrator
credentials.

H H H L M M M 5

R008 T013,
T015

V001,
V005

A005,
A006,
A012

Adjust the
architecture to
remove
protections for
secrets by
learning the
administrator
credentials
through duress.

H H H L M M M 5

R009 T014 V008 A005,
A006

Weaken secret
protections by
mandating a back
door through
legal means.

H H H M H M H 2

R010 T016 V008 A001-
A004,
A006,
A012

Shut down the
service by
threatening the
operator with
court (or taking
them to court
and threatening
them with a file
or custodial
sentence).

H H H L M H H 1

R011 T017,
T018

V008 A001-
A004,
A006,
A012

Shut down an
individual
subject’s switch
by taking the
operator or cloud
platform provider
to court for
aiding blackmail,
or other
legislation in
criminal
investigations.

H H H M H L M 7

This table is more clearly presented in Appendix G.

8.1.3.5 Responses and controls There are a number of possible techniques/controls that can help
to mitigate the risks. These are classified by a common taxonomy describing their strategic function.
Controls may:

• avoid/terminate a risk - ie. by not using the functionality that leads to the risk.
• transfer/share a risk - ie. by contracting a third party, or by taking out insurance.
• reduce/modify a risk- ie. a control that reduces the frequency or impact of a risk.
• accept/tolerate a risk - considered distinct from ignoring a risk (not an option).

Within a strategic function, controls represent tactical options. Controls may:

69

• detect a risk - ie. advise or warn when an incident is occurring
• correct a risk - ie. reduce the impact or the likelihood of success
• prevent a risk - ie. reduce the likelihood an attempt
• represent a directive - ie. policies and procedures for people

At the operational level, controls are classified as:

• physical controls - eg. a lock on a door
• procedural controls - eg. a clear desk policy
• technical controls - eg. the use of antivirus software

For each risk, responses are chosen and a number of controls are proposed to help mitigate the risks
presented, and these are presented in Appendix G.

A lot of the controls proposed align with common application security advice - such as that found in
NCSC guidance on password strength [60]. Where the administration credentials pose a high risk, for
instance, requiring strong passwords or 2FA47 as policy can help to mitigate the risk that a password can
be easily guessed.

Much of the advice is also deemed affordable, and includes common mitigations for risks such as: backup
regimes, monitoring, code review processes, code dependency analysis. Some may cost a little more -
such as relocating to a cloud service provider in a country with a regime unlikely to interfere with the
operation of the service.

8.1.3.6 Further considerations When reflecting on the risk model presented, a number of additional
considerations present themselves:

• The risk model does not incorporate risk of insider attack.
– A common mistake, repeated across organisations is to assume that staff are not motivated to

abuse their levels of access to data.
– In this case, the staff operating the switch (likely a small team), have been assumed to be very

motivated and unlikely to attack the system (unless attacked themselves, and compromised in
some way).

– Implementation of additional monitoring and careful management of staff accounts (ie. requiring
elevation of privileges to access sensitive parts of the system for specific reasons) can help to
reduce the likelihood of insider attacks.

– Similarly, an inclusive and non-toxic work environment can also reduce the motivations that
drive some disgruntled insiders to steal data.

• The system does not incorporate a backup/restore capability.
– This may be provided as a feature by the cloud service. However any offering should be fully

understood, as data could now be stored in multiple locations, and may be encrypted with
keys that must be protected.

– It is especially important not to leave unencrypted data at rest, as this data will be stored in
backups with different security properties.

• The system does not incorporate monitoring capabilities.
– Logs should be collected and periodically reviewed to record and assess the behaviour of the

system.
– Alerts should be generated for unexpected behaviour, or availability issues.
– Periodic review of logs and alerts will help to decrease the likelihood that a breach (or attempted

breach) will go undetected.
• The system is not resilient to denial of service attacks that attempt to overwhelm it.

– High demand: Load balancing and autoscaling micro-services.
– Denial of service attacks: Frontend protection, eg. Cloudflare

• The system endpoints are identifiable as residing on a given service.
– Adding a reverse-proxy makes it much harder to learn where the service actually resides.
– Frontend protection such as Cloudflare may also offer a reverse-proxy functionality.

• Although the system does not feature ‘admin bypasses,’ its infrastructure is administered by a cloud
services operator.

– Create separate accounts with limited access for everyday use.
47Two-factor authentication (2FA) - a second form of identification.

70

– Elevate privileges to read logs, modify the architecture, or upload changes to the micro-services.
– Monitor and alert for activities like these.

8.1.4 Evaluation against requirements

8.1.4.1 Confidentiality The system, as designed, works hard to preserve the confidentiality of subject
secrets. The secret store is separated from other processes and the slightly less sensitive operational data
store, and its contents are encrypted with keys managed by an HSM. This means that even if the code
and data are stolen, they cannot be decrypted except in the managed, hosted environment.

Only administrators may alter the operation of the system, and to do so would require the alteration of,
or introduction of new, micro-services. Controls mentioned in the risk review, and below when discussing
resilience, help to mitigate this risk.

8.1.4.2 Awareness The switch is designed to only release the subject’s secret should they stop
providing evidence of aliveness. That evidence is signed by the HSM on storage, and verified by the
aliveness checking service on retrieval. This provides a strong guarantee that the evidence was recorded
at a given time, and believed by the system to be coming from the subject.

The aliveness signal chosen is a secret (eg. a code phrase) shared by the system and the subject. If the
secret can be guessed the system’s ability to detect when the subject has been attacked is compromised.
Mitigations proposed for credentials in the risk review can also be applied. Strong code phrases, and use
of 2FA, increase the effort required to guess the secret.

8.1.4.3 Timing The aliveness checks are initiated by a regular timed trigger in a trust zone far
removed from public access. It is considered very difficult for an attacker to compromise it, or cause it to
fail.

8.1.4.4 Resilience A risk review such as the one shown, if carefully applied can help to mitigate the
risks to a system from a number of known attackers.

It does, however, indicate a number of weaknesses of the system, too:

• The risk review recommends compliance in the face of legal requirements, and law enforcement
requests (suggesting that they each be contended in court to ensure that the reason behind them
can be evaluated). This is noted to be a compromise required to keep the system running for other
users.

• Some attacks are very difficult to protect against, and the review recommends providing a backup
regime to ensure that if the service is attacked and disabled, it can be restored.

It is important to understand that adding backups to a service increases the attack surface. The backups
themselves must be incorporated into a new design and risk model to ensure that they do not increase
risk.

This design has reasonable protections against remote attack built in to it, including patching and code
reviews to help reduce the number of vulnerabilities available to exploit.

Clean separation of the write and read capabilities into trust zones helps to ensure that even if an
individual’s account were attacked, their secret remains safe (and so can be released when the system
realises that they are unavailable).

The model does not incorporate the risk from internal attacks, which are often overlooked by small and
medium-sized enterprises. A number of motivations exist for internal threats. The CERT Guide to Insider
Threats [61] contains several models describing insider threat motivations and activity, supported by case
files. It presents 3 models of malicious insider threat:

• Insider IT sabotage
• Insider theft of intellectual property
• Insider fraud

A number of controls exist, to help detect and mitigate insider threats before they are realised. Exploring
IT sabotage, the CERT Guide indicates:

71

“Most insiders who committed IT sabotage were disgruntled due to unmet expectations”

It also offers a number of behavioural precursors:

• Conflicts with co-workers or supervisors
• A sudden pattern of missing work, arriving late, or leaving early
• A sudden decline in job performance
• Aggressive or violent behaviour
• Sexual harassment
• Poor hygiene

In a small organisation, it may be enough to work closely together, observe each other, be aware of the
precursors, and have some good controls in place - such as code review, pairing to complete sensitive
tasks, fair workplace rules48, and regular evaluations to ensure that employee expectations are being met.

8.1.4.5 Affordability No billing model is attached to the design, and the risks here remain un-
assessed. In particular, adding billing to a DPS has a number of consequences to the resilience of the
system:

• If the billing system cannot be made anonymous, it presents a risk to the subject and the system
by linking them.

• If traditional banking is used, a user’s bank account might become another attack surface.
• Billing may need to store information which, if compromised, could lead to attacks such as the

freezing of an individual’s assets (which would result in their account with the DPS closing and
their switch being disabled). In many countries, it is a legal requirement to keep records of all
transactions for tax and fraud purposes.

This system is designed to support multiple users, and so if a billing system were put in place, it is likely
that operating costs will not be excessive. This, in turn, means that a regular subscription model is likely
to be affordable to users such as journalists or the organisations that support them.

8.1.4.6 Durability Managed micro-services on a cloud platform will receive regular upgrades and
patches. The software will still need to be maintained, but this provides a degree of support for the
operating systems that the services rely on.

Billing is not considered in this design. Without it, the service will not be able to make payments to the
cloud platform provider - and risks shutting down as and when the budget runs low. Implementing a
billing system that can protect users’ privacy, but secure the future of the service, is essential.

8.1.4.7 Explainability A classic micro-services design benefits from the simplicity of its components.
Each is a small process, dedicated to one task. When arranged in a diagram, as in figure 19, it becomes
easy to explain how the system works.

However, as with all other solutions, the threats to the system, and its mitigations require some awareness
of security practices and will need some work to make them clear for lay-persons. Some good first steps
towards explainability:

• Publish the code as an open source solution, and encourage security researchers to explore it.
• Demonstrate responsiveness to responsible disclosure reports, and explain the patches made in a

blog.
• Publish the architecture diagram, with an explainer.
• Publish the risk assessment, with an explainer.

In addition, endorsements or explainers from trusted figures in academia and software development may
go some way towards helping potential users to develop trust in the system.

8.1.4.8 Visibility In its current state, the design does not report on which switches are active. It
would not be difficult to develop some additional functionality to publish information about the switches,
possibly including “sample” information to show that real incriminating information is held.

48(including immediate repercussions for infractions such as aggressive, violent behaviour or sexual harassment)

72

Of course doing so introduces an additional endpoint, and that increases the attack surface of the solution
- so it must be done with caution. Instead of hosting an additional endpoint, perhaps the system can push
this sample information to the publishing medium where it can be seen without exposing the location of
the DPS itself.

8.2 Design 2: dApp with managed secrets
8.2.1 Premise

This alternate design builds on the premise that smart contracts can provide a number of key requirements
for a DPS. Smart contracts have high availability and integrity properties - as information held on
blockchains is very difficult to censor or repudiate.

However, as smart contracts are executed across a distributed network, and because the isolation
requirements of the EVM49 cannot be guaranteed, they are unable to protect the confidentiality of any
data they hold. Another component is required to meet this requirement and protect the subject’s secret.

Existing dApp solutions, described in section 6.2, manage this in a couple of ways:

• KillCord relies on a hidden, trusted publisher application to store and release the decryption key
for the subject’s secret.

• Kimono distributes SSSS fragments of the decryption key amongst a trusted group of participants,
who are incentivised to release at the right time.

This design relies on a third party network, which can offer similar availability and integrity properties as
a blockchain smart contract, but can also offer confidentiality properties. SECRET (described in section
8.2.2.1) is one such network - and can bridge to other, more public networks, such as Ethereum.

Finally, the design uses the InterPlanetary Filing System (IPFS, described in section 7.5.4) to distribute
the encrypted subject secret - so assuring its wide availability and resistance to censorship.

8.2.2 Research and components

The properties of smart contracts on cryptocurrency networks are discussed in section 7.4.2.2.

8.2.2.1 SECRET network Formerly known as ENIGMA [62], the SECRET Network [63] addresses
the issue of confidentiality amongst smart contracts. As described on their site, scrt.network:

“SECRET Network is built as a decentralized network of computers (secret nodes) utilizing
trusted execution environments (TEEs) to enable secure, private computation over encrypted
data.”

Trusted Execution Environments (TEEs, described in section 7.3.3), such as SGX, offer private computation
facilities - protected from the host operating system and any software running on the device. As such,
they make a good candidate for the execution of secret contracts (smart contracts equipped to run in
TEE enclaves, and to operate on data that remains secret), whilst allowing a network of nodes to agree
on their outcomes, and the state of the network, by consensus.

Secret contracts have all the benefits of smart contracts, but add the confidentiality property noted
missing from other dApp networks.

The SECRET network ensures that nodes on its network execute transactions and smart contracts in
TEEs to ensure that the confidentiality of the executing code and data is preserved.

The Secret Network operates as a “Layer One” solution, and so it has its own consensus and can operate
without any reliance on other blockchains.

At “Layer Two” it has a number of bridges built out to other networks (eg. an Ethereum Bridge), allowing
activity initiated in another blockchain (say, by a non-secret smart contract) to trigger a secret contract in
the SECRET Network - and so perform private activity there before returning a result to the originating
smart contract. This allows for some dApp designs spanning more than one network.

49The Ethereum Virtual Machine (EVM) is a virtual machine specified to execute smart contracts for the Ethereum
network.

73

8.2.3 Design

This design proposes a combination of:

• An Ethereum smart contract, responsible for:
– managing evidence of aliveness,
– triggering the secret contract.

• A secret contract on the SECRET network, responsible for:
– holding and releasing the subject’s secret decryption key when appropriate.

• IPFS, responsible for:
– distributing an encrypted copy of the subject’s secret.

It is illustrated by a number of processes.

8.2.3.1 Process: Creation This process is illustrated in Figure 21.

Figure 21: Design proposal 2: dApp creation flow

1. The subject first pushes the encrypted version of their secret to IPFS.
2. The subject creates a secret contract on the SECRET network, giving it the identity of the DPS

smart contract on Ethereum that manages aliveness evidence, the subject’s Ethereum identity, and
the decryption key for their secret.

3. The subject initiates a new DPS by calling the Create method on the DPS smart contract on the
Ethereum network.

• This smart contract will store details of their identity, and the identity of their secret contract.

8.2.3.2 Process: Check-in This process is illustrated in Figure 22.

Figure 22: Design proposal 2: dApp check-in flow

1. The Ethereum smart contract will store the subject’s last known check-in time, trusting only the
subject’s Ethereum identity to update it.

8.2.3.3 Process: Activation This process is illustrated in Figure 23.

1. A reliable Timer within the Ethereum network causes the DPS smart contract on the Ethereum
network to call Trigger function on the subject’s secret contract on the SECRET network.

74

Figure 23: Design proposal 2: dApp activation flow

2. The subject’s secret contract queries the Ethereum smart contract by calling the Check method
with the subject’s identity. The smart contract returns the time of the user’s last check-in.

3. If the required time has elapsed without a check-in from the subject, the secret contract will then:
• Indicate to the DPS smart contract that it has released the subject’s secret by calling the

IndicateRelease function with the identity of the subject.
• Return the decryption key to the DPS smart contract.

8.2.3.4 DPS smart contract The design of the Ethereum DPS smart contract is represented below
with simplified pseudo-code.

A simplified C-type language syntax is used for clarity, and the contract represents contracts.

Assumptions:

• The current time is available to the contract as time.now.
• The identity of the account that called the smart contract is available as current_user.id.

Map<id,bool> subjects_switch_created;
Map<id,time> subjects_last_check_in;
Map<id,id> subjects_secret_contract_id;
Map<id,bool> subjects_secret_released;

// create a DPS for the subject, allowing the secret contract to communicate with it
Create(id_secret_contract)
{

subjects_switch_created[current_user.id] = true;
subjects_last_check_in[current_user.id] = time.now;
subjects_secret_contract_id[current_user.id] = id_secret_contract;
subjects_secret_released[current_user.id] = false;

}

// allow the subject to check-in
CheckIn()
{

if (subjects_switch_created[current_user.id])
{

subjects_last_check_in[current_user.id] = time.now;
}

}

75

// allow any third party to learn the subject's secret id if appropriate
Trigger(id_subject)
{

if (subjects_switch_created[id_subject])
{

return Call(subjects_secret_contract_id[id_subject], "Trigger");
}

}

// allow the secret contract to learn the subject's last check-in
Check(id_subject)
{

if (subjects_switch_created[id_subject] &&
current_user.id == subjects_secret_contract_id[id_subject])

{
return subjects_last_check_in[id_subject];

}
}

// allow the secret contract to indicate that it has released the subject's secret
IndicateRelease(id_subject)
{

if (subjects_switch_created[id_subject] &&
current_user.id == subjects_secret_contact_id[id_subject])

{
subjects_secret_released[id_subject] = true;

}
}

// allow a third party to check if a subject's secret was released
IsReleased(id_subject)
{

return subjects_switch_created[id_subject]
&& subjects_secret_released[id_subject];

}

This is a simple contract, but it illustrates the key functions that are required - allowing it to serve as a
highly available, highly integral, and non-repudiable source of evidence for subject aliveness evidence.

8.2.3.5 Subject’s secret contract By comparison the secret contract has less to do - once initialised,
it is responsible for running a check against the DPS smart contract to determine if too much time has
passed since the subject’s last check-in. If so, it responds with the subject’s secret decryption key.

This can also be represented as pseudo-code:

id dps_smart_contract;
id subject_id;
byte[] key_dec;

// expect to be called by the DPS smart contract,
// allow any party to initiate a check on a subject's well-being
Trigger()
{

last_check_in = Call(dps_smart_contract, 'Check', subject_id)
if (time.now - last_check_in > Time.Hours(48))

76

{
Call(dps_smart_contract, 'IndicateRelease', subject_id);
return key_dec;

}
}

8.2.4 Evaluation against requirements

8.2.4.1 Confidentiality An encrypted copy of the subject’s secret is distributed to IPFS when the
DPS is initialised. The confidentiality of the decryption key represents the confidentiality of the secret.

This design stores the subject’s secret decryption key in a secret contract on the SECRET network. This
secret contract benefits from the security properties of the SECRET network, which in turn relies on
TEEs to preserve confidentiality of the secret contract’s state.

Although TEEs, like every technology, have undiscovered vulnerabilities - dedicated hardware for confi-
dential computation is considered a strong protection.

The nature of this design, and the guarantees made by smart contracts, mean that once it has been set
up there are no users (with administration privileges or otherwise) that can retrieve the encryption key
until the appropriate time.

8.2.4.2 Awareness This design uses a call to a CheckIn() method on a public Ethereum smart
contract from the subject’s Ethereum identity as a proxy for their aliveness.

This is considered a good proxy. Ethereum identities are well guarded, and access to them relies on secrets
(and sometimes hardware, such as a 2FA or YubiKey device) that only the user will know (or have).

8.2.4.3 Timing This DPS only activates when triggered by a curious party - a call to the Trigger()
function on the DPS smart contract is enough to set it in motion, after which it will return the subject’s
decryption key if they are considered no longer available. This design does not poll, and this may be
problematic for some subjects - who may wish the system to announce their disappearance, rather than
rely on the curiosity of others.

8.2.4.4 Resilience The qualities of smart contracts, secret contracts, and IPFS make this design
very resilient to attack. If the guarantees made by these networks are upheld, then this switch is resilient
against attacks on its CIA properties:

• Confidentiality: The SECRET network is designed to protect the confidentiality of the state of its
secret contracts, using TEE hardware to support that.

• Integrity: Both SECRET and Ethereum operate by consensus - so making it very difficult to attack
and alter the outcome of the contracts’ behaviours. IPFS, too, does not allow its data to be altered
after distribution - and data is addressed by hash, so making it impossible to retrospectively change
‘in place.’

• Availability: SECRET, Ethereum, and IPFS are all distributed networks. It is very difficult to
censor them - as their operations are played out across many nodes.

Possible attacks might include:

• 51% attacks - where a system attempts to gain control of more than half the compute power on the
Ethereum network.

• Transferring the attack to the user, and coercing them to surrender access to their Ethereum
account.

8.2.4.5 Affordability

• The secret contract must be called to trigger the DPS smart contract on Ethereum. This costs
money.

– In fact, every action costs money.
– It may be affordably small, but it is constant.

77

– Unlikely to prove a significant disincentive to people searching for the subject’s secret, but it is
not ideal - the distribution of the secret should be frictionless.

8.2.4.6 Durability The Ethereum network is well established, and from 2022 will be distancing itself
from wasteful proof-of-work mining activity - saving its participants 99.9% of their power consumption.
This is likely to make Ethereum popular cryptocurrency network over the next few years. A willingness
to adapt and upgrade technologies is an important aspect for a currency that wishes to endure.

The future of other technologies involved is not known.

The SECRET network solves the problem of confidentiality by building a network that relies on TEEs. It
is still in development, and has many other features not provided by mainstream networks. It may find
itself superseded in future, though, if other cryptocurrency networks adapt and develop these capabilities
for themselves. At current time, Windows 11 relies on Trusted Computing features such as TPMs [64],
and could well mandate additional features such as TEEs in future. In turn, this will raise the likelihood
that more consumer devices will have this capability.

IPFS is currently in use by a large number of projects [65]. It is developed and maintained by Protocol
Labs in Palo Alto, California. Wikipedia notes that “as of 2021, it has 130 members, $55.7M in funding”
[66].

8.2.4.7 Explainability Distributed apps are more difficult to explain, but do benefit from a number
of properties that a lay person can understand:

• They run on many computers, and so cannot be stopped.
• They are checked by many computers, and so once created cannot be changed.

These properties, combined with a good explainer, may go some way towards helping users develop trust
in the system.

As with all systems, providing the code as an open source solution and subjecting it to review from
security researchers goes a long way towards helping establish that it is a trustable system. In addition,
endorsements or explainers from trusted figures in academia and software development may also help
potential users to develop trust in the system.

8.2.4.8 Visibility The aliveness checks for this system operate on a public blockchain, and so are
visible to a party that is looking for it. With a little additional work, the secret contract could be adapted
to store 2 keys: One that it released on request, which can decrypt a small portion of the subject’s secret,
and a second which decrypts the remainder. This would demonstrate clearly to a potential attacker that
the secret is real, contains valuable information, and can be decrypted.

8.2.5 Further considerations

A number of outstanding issues arise from this design:

• The user is still susceptible to physical coercion by an attacker to grant access to their Ethereum
identity.

– A subject who anticipates this might choose a particularly difficult secret deliberately in order
to be able to air the opinion that they might forget it under duress.

– This could further disincentivise an attack if the attacker knew it wouldn’t help them gain
control of the DPS.

• The design of the smart contracts makes an assumption that a value representing the current time
is available and correct.

– In particular, the design should not trust its host machine to provide the correct time - and
this could lead to .

– One solutions is described in Decentralizing a Dead Man’s Switch [26]. A cluster of smart
contracts are tasked with time keeping, and communicate the length of the current blockchain
as a proxy for the current time.

– Use of a blockchain as proxy for the passage of time is described in section 8.3.2.2.
– A full implementation would be written in Solidity for the EVM, and should incorporate an

understanding of all the pitfalls involved in writing smart contracts [25].

78

• The subject must either be knowledgeable enough to communicate with smart contracts, and to
create their own secret contract; or they must trust a third party to do it for them.

– Open source code can help here - as it gives opportunities for people and organisations the
subject trusts to create tutorials, or services to help them.

• The design is pretty simple, and limited to 1 secret per Ethereum identity.
– As a user can create a separate wallet to operate the DPS, this may aide user privacy by

serving as a pseudonymous identity.

8.3 Design 3: Witness encryption
8.3.1 Premise

Unlike classic cryptography, where a user is present with a secret key that can be used to decrypt a
ciphertext, a DPS must decrypt and share a secret when that user is not present - and so reliance on the
provision of a key is not sufficient.

This design draws on the concept of witness encryption - a generalisation of encryption that permits a
witness (a mapping in an NP language) to serve as the decryption key for a ciphertext.

It relies on the notion that a subject’s activity on a cryptocurrency blockchain constitute a good proxy
for evidence of life - and proposed that a witness encryption scheme could be derived that relies on this
activity to provide a valid decryption witness.

The implication of this is that an entirely passive scheme can be constructed that allows a person’s
encrypted secret to be published, which becomes easily decryptable by any party should their proxy for
aliveness not appear on the blockchain for a given amount of time50.

8.3.2 Research and components

8.3.2.1 Witness encryption Witness encryption, described by Garg et al. in 2013 [67], provides a
means to generalise encryption and decryption operations beyond the use of keys.

Witness encryption offers a way to predicate the successful decryption of a ciphertext on the provision
of a solution to a ‘hard’ puzzle, described as an NP language, L. It is hard to determine which values
should be in L, but easy to verify a given witness (solution).

Cryptography of this sort is described with circuits - a series of logic gates which can be used to represent
a particular function, and in this case the scheme relies on a circuit that is able to determine if a particular
witness belongs to the language L - this is known as the prover.

WE.Enc(1λ, x, m) is the encryption algorithm that outputs a ciphertext, c, with inputs:

• 1λ - a security parameter
• x - an string of any length
• m ∈ M - a message

WE.Dec(c, w) is the decryption algorithm, which either outputs m or ⊥, with inputs:

• c - the ciphertext
• w - the witness, a bit-vector

In a more concrete example, perhaps a person wishes to prepare a prize (the key to a cryptocurrency
wallet, for instance) for the solution to a puzzle that they do not know the answer for. (They may
even prepare such a prize without knowing that a solution exists.) Examples could range from “a valid
crossword puzzle” through to “the proof for an as-yet unsolved problem in mathematics.” Provided a
circuit can be constructed that verifies the answer, this can then be used as a component of witness
encryption to encrypt the prize in such a way that only a verifiable solution will decrypt the prize.

The extremely general nature of witness encryption promises some exciting advances, however it also
requires that the puzzle at the centre of such a scheme share the properties of an NP language.

A DPS must answer the question “is a particular person unavailable,” or “has a particular person been
attacked.” In order to serve as the witness in an encryption scheme, validation of the proof of the subject’s

50As cryptocurrency blockchains grow at an approximately steady rate, they can be used as a proxy for the passage of
time.

79

well-being would need to be represented by a cryptographic circuit, and in order to have similar properties
to an NP language, valid proofs should be infeasible to discover (ie. it shouldn’t be practical to forge
such a proof), but easy to validate.

Validating evidence that represents a person’s state in the physical world to a sufficient level of confidence
is a very complex problem, and beyond the scope of cryptographic circuits as understood today. It would
rely on a number of corroborating sources, and verifications that bring with them a wealth of complexity
and vulnerabilities.

This does not, at first glance, seem to lend itself to an NP problem. However, as discussed in section 7.2
various measures may be substituted as a proxy for aliveness.

8.3.2.2 Blockchain length as a proxy for passage of time To understand how a proxy for
aliveness may serve as a witness, first it is helpful to examine how witness encryption can fashion a proxy
for the passage of time in a time-locked encryption scheme.

This can be achieved by defining a witness as a valid blockchain (from a given starting block) of a given
length.

The bitcoin blockchain can be represented as a sequence of hashes, conforming to some conditions that
control how difficult it is to determine the next hash. It grows at an approximate steady rate (considered
to be approximately 1 new block every 10 mins) - and this is managed by increasing the difficulty of
creating new blocks depending on the resources currently contributing to the chain. As a result, the
blockchain is a reasonable (if imperfect) proxy for the passage of time.

It is not feasible to create a valid blockchain significantly faster than cryptocurrency miners, as they are
highly motivated, well resourced, and competing to uncover bitcoins and add the next block to the chain
the quickest.

Liu, Jager, Kakvi and Warinschi describe the term computational reference clock and illustrate how the
Bitcoin51 blockchain can be used as such in How to build time-lock encryption [68], 2018.

To combine this with witness encryption, Liu et al. define the NP relation R as:

1. For x ∈ N , each statement has the form 1x (the unary representation of x).
2. Any valid Bitcoin blockchain hash sequence52 w = (B1, ..., Bx) of length at least x is a witness for

statement 1x.

ie. (1x, w) ∈ R

For pure witness encryption, the size of the ciphertext has O(N) complexity in relation to the size of
the witness. Similarly, the encryption and decryption operations also have O(N) complexity in time.
This would be manageable complexity, but all forms of witness encryption available in 2018 are based on
multilinear maps - which leads to a polynomial multilinear level, problematic for the size of the witness
and complexity of the scheme.

To contain the level of multilinearity for witness encryption, Liu et al. apply SNARKs (Succinct, Non-
Interactive Argument of Knowledge). This ensures that the multilinearity level of witness encryption
remains constant.

The result is a potential application of witness encryption to time-lock encryption - designed to permit a
user to encrypt a message which can only be decrypted with a valid blockchain of a predetermined length.
This serves as a proxy for the passage of time - and so the scheme allows for the preparation and later
decryption of a secret, only after a given amount of time has passed.

8.3.3 Design

8.3.3.1 Blockchain activity as a proxy for aliveness Having established that it is possible to
predicate the decryption of a message on the provision of a valid chain of blocks, this design proposes an
extension of the constraints of the witness encryption scheme to require additional properties from the
chain:

51This generalises to blockchains beyond Bitcoin, of course.
52The hash sequence itself is most important here - the remaining content of the blocks (ie. other transaction data) can

be ignored. Further, B1 does not need to be the genesis block. It is possible to initialise the clock from the most recent
block, and ignore older parts of the blockchain.

80

• A valid chain of given length without evidence of aliveness (here, activity from the user’s cryptocur-
rency wallets).

This can be represented as an extension of the application described by Liu et al. redefining the NP
relation R as:

1. For x ∈ N , each statement has the form 1x (the unary representation of x).
2. Any valid Bitcoin blockchain hash sequence w = (B1, ..., Bx) of length at least x, where a specific

Bitcoin wallet (or wallets) do not initiate a transaction for at least x blocks, is a witness for statement
1x.

Although this significantly complicates the model (Liu et al. simply use each block’s hash, but this
requires transactional information from blocks, too) it leads to a witness encryption scheme where only a
blockchain that does not contain a proof of life for the subject may be used to decrypt the secret.

8.3.3.2 Process The process for this proposed solution is very simple:

1. A subject creates two wallets for themselves in a cryptocurrency of their choice.
2. They construct a witness encryption scheme that requires a witness as described above, where the

length of the required blockchain is set to the equivalent of approximately a week.
3. They encrypt their secret with the scheme and publish somewhere public, eg. IPFS.
4. They proceed to transfer a small amount of cryptocurrency between the wallets each week.

Should they ever stop, a valid blockchain that goes a full week without their transactions will serve as a
valid witness to decrypt their secret. Provided it is easily discoverable, and instructions for applying the
scheme to decrypt the secret are shared, this will result in the secret being decryptable by any party.

8.3.4 Evaluation against requirements

8.3.4.1 Confidentiality This scheme encrypts the subject’s secret, and provided they delete their
original, the secret is protected against any attempts to decrypt it without a valid witness.

8.3.4.2 Awareness Activity on the blockchain may be considered a good proxy for aliveness - although
it isn’t perfect.

Integrity of a user’s evidence of aliveness is now as strong as the protection on the cryptocurrency wallets
they use. A wallet that uses a biometric signal in addition to secrets/credentials could improve the quality
of its proxy for aliveness and well-being. A custom wallet could be constructed to serve this purpose.

8.3.4.3 Timing Provided the blockchain continues to grow at a reliable rate, this scheme’s ciphertext
will not be decryptable until a given amount of time has passed. However, over the course of a person’s
lifetime blockchains may intentionally change their rates (or even the mechanism by which they operate).

8.3.4.4 Resilience If the assumption that such a scheme can be constructed and represents an NP
language holds, this solutions is extremely resilient. The only way to defeat it would be to develop an
equally valid alternative chain. This may be where the scheme is most at risk:

An attacker may seek to construct their own, valid, alternative chain that does not contain evidence of
the user’s transactions. It may take time, but if they succeed, then an attacker could construct a witness
that can decrypt the secret.

Of course, the main threat would wish to keep the secret protected - but this does alter the ability of the
switch to control the release time, and early release also has negative connotations for the subject.

A potential mitigation for this risk:

Further constrain the witness such that it must also include positive evidence of activity from
any other chosen identity, predicted to reliably transact over the given period. The signature
of this (potentially even unwitting) identity will be impossible for an attacker to fake.

81

8.3.4.5 Affordability This solution is extremely affordable, as it is largely passive. A small piece of
software could be constructed to encrypt the secret. The subject must then perform some activity on the
blockchain to show that they are alive. As this can be a small transaction from one wallet they own to
another they own, it is likely to be very inexpensive.

8.3.4.6 Durability This solution depends on continued activity on the blockchain of the cryptocur-
rency of the subject’s choice. If this activity changes, or the cryptocurrency loses popularity, it may be
necessary to rebuild the ciphertext for another. As the subject will be making regular transactions as a
proof of life, they are likely to be aware if this is the case.

8.3.4.7 Explainability This solution relies on some complex mathematics. It may be possible to
explain some of the assurances that it provides in simpler terms, but it is unlikely that many of the target
subject will want to verify it for themselves. They may rely on trusted academics and peer review to
determine that the scheme is resilient.

8.3.4.8 Visibility Under this scheme, the ciphertext can be safely published - and a subject is free to
publish information about where it can be found, and how it can be decrypted. It may be prudent to
encrypt a second sample with a scheme that allows it to decrypt sooner (more like a time-lock encryption)
to demonstrate that the secret is real.

8.3.5 Further considerations

This design is hypothetical, and relies on the assumption that a witness encryption scheme can be
constructed that is capable of evaluating activity on a blockchain. It has yet to be shown that this
constitutes a valid mapping in an NP language. Although it is not yet developed, it may form a fruitful
avenue for further research.

8.4 Scoring
Each solution’s evaluation against the requirements for a DPS53 is scored with the same criteria used to
evaluate existing systems, reproduced here:

Table 48: Scoring criteria for evaluated DPS solutions, reproduced

Score Description

0 Does not meet requirement, or no information available.
1 Shows awareness of the requirement, minimal steps towards a solution, with significant room for

improvement.
2 Partially meets the requirement, with some room for improvement.
3 Meets the requirement comprehensively, with little or no room for improvement.

This scoring matrix is reproduced as figure 24.

The proposed designs each offer a different approach to the problem.

The hosted micro-services architecture relies on the security properties of its hosting provider. Whilst the
major providers are considered to have strong protections including excellent staff policies, and physical
protections for their data centres, they may be vulnerable to legislation and law enforcement in the
countries that the data is hosted in. This limits its confidentiality and resilience properties.

It also needs additional work to ensure that it is highly available. Additional protections could help to
prevent denial of service attacks:

• DoS protections from a service such as Cloud Flare.
• Load balancing to help with periods of high load or smaller attacks.
• Proxies and a reverse-proxy to help conceal its location.

53Requirements are defined in section 5.2.

82

Figure 24: Scoring matrix for proposed and existing DPS solutions

83

The micro-services design is weakest where trust is concerned. Users must decide to trust the operator,
and so such a service will need to go to lengths to show that it will not leak secrets, and has a good grip
on internal threats as well as external. A privacy policy is a good first step. It does, however, have an
advantage over the others for explainability - it is simple to describe, and may follow a less-technical
user’s assumptions about how such a system should work.

The dApp design benefits from the strong availability properties of smart contracts, and the confidentiality
provided by secret contracts. As it spans 2 networks, however, and relies on complex concepts to assure
its properties, it may be difficult to explain to target subjects, suffering in explainability.

Although considered affordable, the cost of using such a dApp may change with time, as cryptocurrencies
fluctuate in value.

The witness encryption scheme benefits from the appeal of being an almost entirely passive solution. Once
the secret is encrypted, it will not decrypt until the subject’s proof of life is absent from the blockchain.
It almost seems magical!

As this scheme depends on complex (and currently undeveloped) mathematics, it may also prove unsuitable
for the target subjects unless they can accept advice about its safety from trusted academics. For that
reason it has been awarded a low score for explainability.

As discussed, the proposed witness encryption scheme may be susceptible to a false chain that does not
contain the subject’s proof of life. Careful thought must be given to the definition of a valid witness to
mitigate this risk.

8.4.1 Conclusion

The strongest scoring solution presented is the distributed application, using an Ethereum smart contract
and a SECRET secret contract. It meets most of the requirements comprehensively.

A lot can be learned from building, iterating on designs, and user acceptance testing. These designs make
good candidates for future work.

84

9 Evaluation
This thesis set out to contribute one or more designs to tackle the requirements of a Dead Person Switch.
In early research it became apparent that very little formal work exists in this field.

In order to deliver the designs, the work was divided into several stages, each of which is discussed in this
section.

Table 49: Implementation stages for evaluation

Stage Task

1 Development of requirements
2 Assessment of existing solutions and related components
3 Proposal and evaluation of designs

The limitations found in this project lead to a number of recommendations for future work, discussed in
section 10.1.

9.1 Development of requirements
Research to support the development of requirements proposed in section 5.2 was conducted through
several means:

• Desk research
• Study
• Survey

Desk research was limited by available material.

Very little formal work on Dead Person Switches is available. In the absence of this, other sources (blog
posts, news articles) provide a view of high profile cases where a DPS or similar tool is used. A number
of information-rich articles mentioned in section 3 also contribute to the picture, and broadened research
into time-lapse cryptography techniques, too.

The researcher is aware of ongoing work to develop a taxonomy of threats to journalists. Unfortunately,
this was not published (or available for review) at time of writing.

Although not directly related, time-lapse cryptography provides a number of more formally explored
techniques, some of which could then be adapted. This line of research led to the inclusion of witness
encryption as a proposed solution.

Learning about user needs is key to gathering requirements. The survey conducted was designed to learn
about journalists, their experience of risks to personal safety, how they would reason about the uses of a
DPS, the impact of such a system failing, and how they would decide to trust such a service.

With limited resources and reach, the survey was not targeted at whistleblowers, but rather the journalists
who work with them. This addresses some, but not all, of the possible aspects of an investigative
journalism / whistleblower use case.

Despite efforts to connect with multiple journalism support communities54, the survey responses were
limited. As shown in figure 4, only 5 of 73 participants completed it - providing some indirect evidence of
the difficulty developing trust with investigative journalists.

With only 5 respondents, the survey results are not a comprehensive picture of the experience of
investigative journalism - and this limits the gravitas and rigour that can be applied to any inferences
drawn from the exercise.

Participants that did respond indicated that they did not believe they would use a DPS (one stating
that it would be too expensive to operate), couldn’t trust the operator of such a service, and didn’t

54Particular thanks to those in the Bureau Local community who helped broaden the reach of the survey, and colleagues
who vouched for the intentions of the research.

85

believe that a secret could have a strong deterrent effect. Initially disheartening, these outcomes led to
the incorporation of additional requirements relating to cost, trust and deterrence55.

A further requirement, perhaps missing, is the ability to retire a secret if the threat to a subject is no
longer considered dangerous56. This could impact several of the proposed and evaluated solutions as, for
instance, smart contracts cannot be altered once committed to a blockchain. This means that if they do
not include a cancellation mechanism, the subject risks committing to suppressing release of their secret
indefinitely.

9.2 Assessment of existing solutions and related components
The derived explainability requirement highlights a strong weakness found in all existing solutions: Users
must find a reason to trust a service, and none so far have made comprehensive efforts to describe their
processes. In fact, only one provides a privacy policy.

The absence of comprehensive documentation for closed source solutions makes it much harder to review
and comment on the qualities of these systems. Research was limited to an understanding of existing
systems based on the material they do provide. Attempts to enquire about design (queries sent to all 4
hosted solutions) provided a little more information about Dead Man Tracker, and Letters Cloud - but
in each case, the architecture and design was not available. This paints an incomplete picture of the
landscape, although in several cases there was enough information to give the researcher confidence in
their commentary.

With unlimited resources, it might have been possible to further incentivise information sharing for this
research:

• Remuneration could be offered to hosted solutions willing to share their architecture and threat
models.

• Reluctance to communicate could be reduced with the offer of an NDA, and assurances from the
University of Oxford. (If necessary, ethical approval could be sought for this part of the research,
too, and the protections put in place shared with these services to help them decide about sharing
their information.)

In order to assess the capabilities of the hosted services, in addition to reading material published on
their websites, the researcher created accounts and tested them. In some cases, this was possible -
although in others, the services were no longer working. This generated insights into durability. Where
possible, services were assessed against the requirements defined in section 5.2, which led to the creation
of comparable reports.

Further colour and insight could be obtained by inviting subjects (professional investigative journalists)
to try these services and share their opinions, too.

Each existing solution was assessed against the affordability requirement defined in section 5.2. However,
it has not been rigorously defined. Further information about expected salaries, and expectations of the
cost of essential tooling learned from further survey of journalists could help to clarify this measure.

9.3 Proposal and evaluation of designs
As discussed above, research in the space of Dead Person Switches isn’t far enough developed to have
given clear direction for a single implementation. Instead, this thesis delivers 3 designs, each tackling a
different approach.

Limited resources and a word-limit constrained this thesis, and led to a careful prioritisation of work.
Only the first (micro-service architecture) proposed solution is complemented by a risk analysis, as this is
a time consuming, and high volume, output. By providing a risk analysis for the “classic” solution, this
thesis provides a point of reference when reasoning about the others.

Further, the other solutions proposed do not lend themselves easily to traditional risk analysis: Both have
a strong reliance on cryptocurrency networks, which are decentralised, complex systems57 that quickly

55Requirements: Affordability, Explainability, Visibility
56Perhaps an investigation has concluded, or perhaps they have turned over a new leaf.
57The researcher does not shy away from complex work, but modelling something this vast is beyond the scope of an MSc

thesis, and a distraction from the techniques being explored. It would significantly curtail the other work in order to meet

86

complicate risk analysis. (This is discussed in section 4.5). Instead, a pragmatic approach was adopted:
Analyse by evaluation against the requirements, and compare and contrast the 3 proposed solutions.

The designs themselves were selected to represent different, and promising, approaches to the solution.
These 3 designs are not believed to represent a comprehensive collection of all possible solutions. Further
resources, time, and research could lead to the proposal and assessment of additional designs exploring
the breadth of related components.

9.4 Breadth vs. depth
At several points in this thesis, choices were made regarding the scope - and that has resulted in a broad
study of solutions, components and related research. This, combined with the constraints of an MSc
thesis, limited the depth to which aspects could be explored.

Some supporting material is available in the appendices, but ultimately some research that did not lead
to design proposals had to be shortened and summarised, or removed, to meet the constraints.

This is particularly true of desk research into trust networks and subjective logic, which begins to address
relevant questions around trust and reliability. Ultimately it was determined to be impractical in its
current state, and inapplicable to the proposed solutions. It has been summarised in section 7.1.

9.5 Ethical risk
This thesis chooses to focus on a use case that is considered ethical. However, even the threat model
presented in section 5.4.2 acknowledges that there are some activists who may disagree.

Of course any system may be used for any purpose, but the act of building a system that could be used
for malicious activity is fraught with risk. It should be explored further before production systems are
built.
the constraints of the format.

87

10 Conclusions
10.1 Recommendations for future work
10.1.1 Collaborative research

The survey was limited in scope. Subsequent work to learn from the investigative journalism commu-
nity could be broadened by conducting research in partnership with journalism outlets, unions and
communities58.

Doing so is an opportunity to learn more from potential subjects, including questions that might reveal
insights regarding the potential additional requirement mentioned in section 9: the ability to cancel a
DPS.

10.1.2 Alignment with research

The risk model developed for this thesis should be reviewed in the light of ongoing research into journalism
and safety. The taxonomy of threats to journalists, as yet unpublished, will positively impact the quality
of research into this field - providing a common language for conversation about these risks.

10.1.3 Alternative design proposals

As discussed in section 9, the designs proposed are not considered to be comprehensive, and a number of
possible alternative designs could also contribute to the understanding of this field. Proposed further
research might include (but is not limited to) some of the following:

• A system operated entirely by people (building on work exploring trust networks, game theory, and
remuneration effects to manage the honesty of large groups of strangers).

• A system with physical components (assessing physical protections for data, device hardening
measures, and the utility of obfuscation of physical location, information, etc).

• A system that relies on strong biometric signals to measure aliveness and well-being (developing
ideas about embedded bionic hardware, or relying on other systems that do this - such as a mobile
phone device unlock).

• A system that builds on proof of life forensics to determine the aliveness of a person, using a wide
variety of signals generated from the footprint of daily activity.

10.1.3.1 Trust networks The human element in this field is a particularly wide area for further
research.

Research into trust networks is still in its infancy. It was dismissed in this thesis as impractical for
target subjects to apply, but it is only through steady research that working solutions can be developed.
Methods for measuring and estimating the behaviour of participants in a trust network could bring this
field closer to practical applications. A cross-disciplinary approach to understanding human behaviour in
these scenarios (perhaps through an exploration of game theory, psychology, and subjective logic) might
help.

10.1.3.2 Human judgement Developing a method for measuring humans’ ability to determine the
aliveness of others (and just how much effort is required to deceive them) will help to determine just how
well trust networks are suited to inclusion in a DPS.

Calculating the F 1 scores for human judges could provide a scale that steadily changes over time - as the
quality of deceptions improves.

With sufficient data, Turing Tests could form the basis of an F1 calculation for the accuracy of humans
as judges.

10.1.3.3 Proof of life forensics The application of techniques in proof of life forensics (used in
investigation contexts to determine if and when a person has died) could also prove valuable to this field.

58A researcher without a public profile indicating their background in voluntary policing may also gain more traction with
investigative journalists.

88

10.1.4 Visibility

The visibility requirement links evidence suggesting that a DPS is working (and contains a valuable
secret) to a deterrent effect.

Proof of knowledge is seen in other areas of research, too - including zero knowledge proofs, and other
forms of verification.

In secretive services, such as dark markets, vendors selling stolen user accounts will often provide a small
sample to show that they “have the goods.” Research into how effective this is as a sales tactic could help
to establish which proofs can convince a threat that a DPS holds valuable information.

10.1.5 Ethics and abuse

An exploration of abuse cases may help to develop a stronger understanding of which properties make a
service attractive to users who wish to conduct blackmail, as compared to users with more wholesome
pursuits such as whistleblowing and journalism. This could lead to design recommendations that nudge
users towards certain desired behaviours, or discourage others.

10.1.6 Extended scope

Complex scenarios were scoped out of this thesis - including some possibilities that have the potential to
quickly multiply the complexity of any solution.

• How do the incentives change when there is more than 1 threat, or more than 1 secret to store in a
DPS?

• If a subject owns two switches, one with a secret about each potential threat, and is attacked - how
should each switch determine whether it should activate?

• If a user has a single switch containing multiple secrets pertaining to multiple threats, how might
they be expected to behave if they do or do not know about each other?

– Does the risk to the subject automatically increase with the number of threats?
– Can threats be persuaded to change their behaviour (to protect the subject, even) if they

perceive that another threat may succeed in killing the subject?
– What behaviours can be ascribed to threats who also have reason to sabotage each other?

• What happens when one participant in a trust network is trying to undermine the whole group?

These questions could form the foundation for a number of cross-disciplinary research projects.

10.1.7 Build and test

A lot can be learned from building and testing systems, and work to develop one or more of the proposed
designs could be extremely valuable. User acceptance testing, in this case, could inform work to discover
how best to achieve the explainability requirement - and how users might develop trust in a system.

The development of a witness encryption scheme is likely to require some intensive research, which might
conclude that it is impossible. This is worth establishing. It has the potential to guide the creation of a
passive system with strong properties, meeting the requirements of a DPS.

Developing these solutions in the public domain as open source projects will allow security researchers to
evaluate and attack them - providing valuable insights into their strengths and weaknesses.

10.2 Final summary
This thesis has presented research into the background and uses for a Dead Person Switch, developed a
set of requirements, and used those to evaluate existing systems.

It has shown that although some existing systems come close, none are really capable of meeting the
needs expressed in the investigative journalism use case.

It has also contributed three evaluated designs, each based on a different approach to the problem: a
micro-services architecture, a dApp, and an application of witness encryption. These designs are shown
to meet many more of the established requirements for a DPS than the existing available systems.

89

The research conducted, designs proposed, and their evaluation, leads to a number of recommendations
for future work, outlined above.

90

Bibliography
1. Josang A, Hayward R, Pope S. Trust network analysis with subjective logic. Conference Proceedings
of the Twenty-Ninth Australasian Computer Science Conference (ACSW 2006). Australian Computer
Society, 2006, 85–94.

2. Jøsang A. Subjective Logic. Springer, 2016.

3. Zhang F, Daian P, Bentov I et al. Paralysis proofs: Secure dynamic access structures for cryptocurrency
custody and more. AFT 2019 - Proceedings of the 1st ACM Conference on Advances in Financial
Technologies 2019:1–5.

4. Martin A. The ten-page introduction to trusted computing. 2008.

5. Abelson H, Anderson R, Bellovin SM et al. Keys under doormats: Mandating insecurity by requiring
government access to all data and communications. Journal of Cybersecurity 2015;1:69–79.

6. Nemec M, Sys M, Svenda P et al. The Return of Coppersmith’s Attack: Practical Factorization of
Widely Used RSA Moduli. 24th ACM Conference on Computer and Communications Security (CCS’2017).
ACM, 2017, 1631–48.

7. ROCA: Infineon TPM and secure element RSA vulnerability guidance. 2017. https://www.ncsc.gov.u
k/guidance/roca-infineon-tpm-and-secure-element-rsa-vulnerability-guidance

8. Costan V, Devadas S. Intel sgx explained. IACR Cryptol ePrint Arch 2016;2016:1–18.

9. Popescu A et al. A critical analysis of whistleblower protection in the european union. Journal of
Public Administration, Finance and Law 2015:135–40.

10. The WikiLeaks insurance files tweet. 2016. https://twitter.com/wikileaks/status/743824112376766465

11. Snowden’s contingency: ’Dead man’s switch’ borrows from cold war, WikiLeaks. 2013. https:
//www.wired.com/2013/07/snowden-dead-mans-switch/

12. Tuerk A. Plan your digital afterlife with inactive account manager. 2013. https://publicpolicy.googl
eblog.com/2013/04/plan-your-digital-afterlife-with.html

13. Maintaining ownership continuity of your user account’s repositories. https://docs.github.com/
en/github/setting-up-and-managing-your-github-user-account/managing-access-to-your-personal-
repositories/maintaining-ownership-continuity-of-your-user-accounts-repositories

14. More than half of parents don’t have a will. 2018. https://www.which.co.uk/news/2018/12/half-of-
adults-dont-have-wills-but-what-happens-to-your-children-when-you-die/

15. Fifteen men on a dead man’s switch. 2018. https://blog.lopp.net/fifteen-men-on-a-dead-man-s-
switch/

16. Hackers solve password mystery. 2002. https://chnm.gmu.edu/digitalhistory/links/cached/preservin
g/8_2_password.htm

17. Shamir A. How to share a secret. Communications of the ACM 1979;22:612–3.

18. GitHub deceased user policy. https://docs.github.com/en/github/site-policy/github-deceased-user-
policy

19. How to prove and verify someone’s identity. 2021. https://www.gov.uk/government/publications/ide
ntity-proofing-and-verification-of-an-individual/how-to-prove-and-verify-someones-identity#validity

20. Complete guide to GDPR compliance. 2018. https://gdpr.eu/

21. Goldwasser S, Kalai YT, Popa RA et al. How to run turing machines on encrypted data. Annual
Cryptology Conference. Springer, 2013, 536–53.

22. National Statistics O for. Property crime tables. 2020. https://www.ons.gov.uk/peoplepopulationa
ndcommunity/crimeandjustice/datasets/focusonpropertycrimeappendixtables

23. A journalist’s resource for safe and ethical reporting, chapter 4: Digital safety. 2021. https:
//training.rsf.org/chapter-4-digital-safety/

91

https://www.ncsc.gov.uk/guidance/roca-infineon-tpm-and-secure-element-rsa-vulnerability-guidance
https://www.ncsc.gov.uk/guidance/roca-infineon-tpm-and-secure-element-rsa-vulnerability-guidance
https://twitter.com/wikileaks/status/743824112376766465
https://www.wired.com/2013/07/snowden-dead-mans-switch/
https://www.wired.com/2013/07/snowden-dead-mans-switch/
https://publicpolicy.googleblog.com/2013/04/plan-your-digital-afterlife-with.html
https://publicpolicy.googleblog.com/2013/04/plan-your-digital-afterlife-with.html
https://docs.github.com/en/github/setting-up-and-managing-your-github-user-account/managing-access-to-your-personal-repositories/maintaining-ownership-continuity-of-your-user-accounts-repositories
https://docs.github.com/en/github/setting-up-and-managing-your-github-user-account/managing-access-to-your-personal-repositories/maintaining-ownership-continuity-of-your-user-accounts-repositories
https://docs.github.com/en/github/setting-up-and-managing-your-github-user-account/managing-access-to-your-personal-repositories/maintaining-ownership-continuity-of-your-user-accounts-repositories
https://www.which.co.uk/news/2018/12/half-of-adults-dont-have-wills-but-what-happens-to-your-children-when-you-die/
https://www.which.co.uk/news/2018/12/half-of-adults-dont-have-wills-but-what-happens-to-your-children-when-you-die/
https://blog.lopp.net/fifteen-men-on-a-dead-man-s-switch/
https://blog.lopp.net/fifteen-men-on-a-dead-man-s-switch/
https://chnm.gmu.edu/digitalhistory/links/cached/preserving/8_2_password.htm
https://chnm.gmu.edu/digitalhistory/links/cached/preserving/8_2_password.htm
https://docs.github.com/en/github/site-policy/github-deceased-user-policy
https://docs.github.com/en/github/site-policy/github-deceased-user-policy
https://www.gov.uk/government/publications/identity-proofing-and-verification-of-an-individual/how-to-prove-and-verify-someones-identity#validity
https://www.gov.uk/government/publications/identity-proofing-and-verification-of-an-individual/how-to-prove-and-verify-someones-identity#validity
https://gdpr.eu/
https://www.ons.gov.uk/peoplepopulationandcommunity/crimeandjustice/datasets/focusonpropertycrimeappendixtables
https://www.ons.gov.uk/peoplepopulationandcommunity/crimeandjustice/datasets/focusonpropertycrimeappendixtables
https://training.rsf.org/chapter-4-digital-safety/
https://training.rsf.org/chapter-4-digital-safety/

24. Orcutt M. Once hailed as unhackable, blockchains are now getting hacked. 2019. https://www.techno
logyreview.com/2019/02/19/239592/once-hailed-as-unhackable-blockchains-are-now-getting-hacked/

25. Atzei N, Bartoletti M, Cimoli T. A survey of attacks on ethereum smart contracts (sok). International
Conference on Principles of Security and Trust. Springer, 2017, 164–86.

26. Sutherland A. Tell no tales? Decentralizing a dead man’s switch. 2019. https://blog.enigma.co/tell-
no-tales-decentralizing-a-dead-mans-switch-6217e2f4361b

27. Branwen G. Time-lock encryption. 2019. https://www.gwern.net/Self-decrypting-files

28. Shostack A. Experiences threat modeling at microsoft. MODSEC@ MoDELS 2008;2008.

29. Shostack A. STRIDE chart. 2007. https://www.microsoft.com/security/blog/2007/09/11/stride-
chart/

30. Goodwin M. Threat dragon lightning demo. 2020. https://www.youtube.com/watch?v=n6JGcZGFq
5o

31. Jamal khashoggi: All you need to know about saudi journalist’s death. 2021. https://www.bbc.co.u
k/news/world-europe-45812399

32. Anderson T. Researchers spot thousands of android apps leaking user data through misconfigured
firebase databases. 2020. https://www.theregister.com/2020/05/12/report_thousands_of_android_app
s/

33. Celebi GFM, Fletcher-Hill P, Que D. Kimono: Trustless secret sharing using time-locks on ethereum.
2018. https://medium.com/@pfh/kimono-trustless-secret-sharing-using-time-locks-on-ethereum-
8e7e696494d

34. AR6 climate change 2021. 2021. https://www.ipcc.ch/report/ar6/wg1/

35. Beautement A, Sasse MA, Wonham M. The compliance budget: Managing security behaviour in
organisations. Proceedings of the 2008 New Security Paradigms Workshop. 2008, 47–58.

36. Munroe R. Security. https://xkcd.com/538/

37. Shieber SM. Lessons from a restricted turing test. arXiv preprint cmp-lg/9404002 1994.

38. Shah H, Warwick K. Hidden interlocutor misidentification in practical turing tests. Minds and
machines 2010;20:441–54.

39. Greene D. New software can mimic anyone’s voice. 2017. https://www.npr.org/2017/05/05/5270138
20/new-software-can-mimic-anyones-voice

40. Leviathan Y. Google duplex: An AI system for accomplishing real-world tasks over the phone. 2018.
https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html

41. Aliev A. Fake elon musk joined the zoom call. 2020. https://www.youtube.com/watch?v=lONuXGN
qLO0&ab_channel=AliAliev

42. Aliev A. Avatarify. 2020. https://github.com/alievk/avatarify-python

43. Life event verification (LEV) API reference. https://docs.api.lev.homeoffice.gov.uk/life-event-
verification-lev-api/reference

44. Research your family history using the general register office. https://www.gov.uk/research-family-
history

45. Art. 4 GDPR, definitions. 2018. https://gdpr.eu/article-4-definitions/

46. Grawrock D. Trusted computing, lecture. 2019.

47. Xin X. Titan m makes pixel 3 our most secure phone yet. 2018. https://blog.google/products/pixel/t
itan-m-makes-pixel-3-our-most-secure-phone-yet/

48. Dismantling of an encrypted network sends shockwaves through organised crime groups across europe.
2020. https://www.europol.europa.eu/newsroom/news/dismantling-of-encrypted-network-sends-
shockwaves-through-organised-crime-groups-across-europe

49. Together we are powerful - folding@home. https://foldingathome.org/

92

https://www.technologyreview.com/2019/02/19/239592/once-hailed-as-unhackable-blockchains-are-now-getting-hacked/
https://www.technologyreview.com/2019/02/19/239592/once-hailed-as-unhackable-blockchains-are-now-getting-hacked/
https://blog.enigma.co/tell-no-tales-decentralizing-a-dead-mans-switch-6217e2f4361b
https://blog.enigma.co/tell-no-tales-decentralizing-a-dead-mans-switch-6217e2f4361b
https://www.gwern.net/Self-decrypting-files
https://www.microsoft.com/security/blog/2007/09/11/stride-chart/
https://www.microsoft.com/security/blog/2007/09/11/stride-chart/
https://www.youtube.com/watch?v=n6JGcZGFq5o
https://www.youtube.com/watch?v=n6JGcZGFq5o
https://www.bbc.co.uk/news/world-europe-45812399
https://www.bbc.co.uk/news/world-europe-45812399
https://www.theregister.com/2020/05/12/report_thousands_of_android_apps/
https://www.theregister.com/2020/05/12/report_thousands_of_android_apps/
https://medium.com/@pfh/kimono-trustless-secret-sharing-using-time-locks-on-ethereum-8e7e696494d
https://medium.com/@pfh/kimono-trustless-secret-sharing-using-time-locks-on-ethereum-8e7e696494d
https://www.ipcc.ch/report/ar6/wg1/
https://xkcd.com/538/
https://www.npr.org/2017/05/05/527013820/new-software-can-mimic-anyones-voice
https://www.npr.org/2017/05/05/527013820/new-software-can-mimic-anyones-voice
https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html
https://www.youtube.com/watch?v=lONuXGNqLO0&ab_channel=AliAliev
https://www.youtube.com/watch?v=lONuXGNqLO0&ab_channel=AliAliev
https://github.com/alievk/avatarify-python
https://docs.api.lev.homeoffice.gov.uk/life-event-verification-lev-api/reference
https://docs.api.lev.homeoffice.gov.uk/life-event-verification-lev-api/reference
https://www.gov.uk/research-family-history
https://www.gov.uk/research-family-history
https://gdpr.eu/article-4-definitions/
https://blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/
https://blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/
https://www.europol.europa.eu/newsroom/news/dismantling-of-encrypted-network-sends-shockwaves-through-organised-crime-groups-across-europe
https://www.europol.europa.eu/newsroom/news/dismantling-of-encrypted-network-sends-shockwaves-through-organised-crime-groups-across-europe
https://foldingathome.org/

50. Bitcoin consumes ’more electricity than argentina’. 2021. https://www.bbc.co.uk/news/technology-
56012952

51. Criddle C. Cambridge bitcoin electricity consumption index. https://cbeci.org/

52. Leising M. Bye-bye, miners! How ethereum’s big change will work. 2021. https://www.bloombergqui
nt.com/quicktakes/bye-bye-miners-how-ethereum-s-big-change-will-work-quicktake

53. McKie R, Thorpe V. Digital domesday book lasts 15 years not 1000. 2002. https://www.theguardian.
com/uk/2002/mar/03/research.elearning

54. Merger of national policing systems over budget and behind schedule. 2020. https://www.computer
weekly.com/news/252492695/Merger-of-national-policing-systems-over-budget-and-behind-schedule

55. List of oldest institutions in continuous operation. https://en.wikipedia.org/wiki/List_of_oldest_ins
titutions_in_continuous_operation

56. The streisand effect. https://en.wikipedia.org/wiki/Streisand_effect

57. The AACS encryption key controversy. https://en.wikipedia.org/wiki/AACS_encryption_key_con
troversy

58. List of material published by WikiLeaks. https://en.wikipedia.org/wiki/List_of_material_published
_by_WikiLeaks

59. Secure design principles. https://www.ncsc.gov.uk/collection/cyber-security-design-principles

60. Password policy: Updating your approach. https://www.ncsc.gov.uk/collection/passwords/updating-
your-approach

61. Cappelli DM, Moore AP, Trzeciak RF. The CERT Guide to Insider Threats: How to Prevent, Detect,
and Respond to Information Technology Crimes (Theft, Sabotage, Fraud). Addison-Wesley, 2012.

62. Zyskind G, Nathan O, Pentland A. Enigma: Decentralized computation platform with guaranteed
privacy. arXiv preprint arXiv:150603471 2015.

63. Woetzel C. Secret network: A privacy-preserving secret contract & decentralized application platform.
https://scrt.network/graypaper

64. Update on windows 11 minimum system requirements, windows insider blog. 2021. https://blogs.wi
ndows.com/windows-insider/2021/06/28/update-on-windows-11-minimum-system-requirements/

65. IPFS ecosystem directory. https://ecosystem.ipfs.io/

66. InterPlanetary file system. https://en.wikipedia.org/wiki/InterPlanetary_File_System

67. Garg S, Gentry C, Sahai A et al. Witness encryption and its applications. Proceedings of the
Forty-Fifth Annual ACM Symposium on Theory of Computing. 2013, 467–76.

68. Liu J, Jager T, Kakvi SA et al. How to build time-lock encryption. Designs, Codes and Cryptography
2018;86:2549–86.

93

https://www.bbc.co.uk/news/technology-56012952
https://www.bbc.co.uk/news/technology-56012952
https://cbeci.org/
https://www.bloombergquint.com/quicktakes/bye-bye-miners-how-ethereum-s-big-change-will-work-quicktake
https://www.bloombergquint.com/quicktakes/bye-bye-miners-how-ethereum-s-big-change-will-work-quicktake
https://www.theguardian.com/uk/2002/mar/03/research.elearning
https://www.theguardian.com/uk/2002/mar/03/research.elearning
https://www.computerweekly.com/news/252492695/Merger-of-national-policing-systems-over-budget-and-behind-schedule
https://www.computerweekly.com/news/252492695/Merger-of-national-policing-systems-over-budget-and-behind-schedule
https://en.wikipedia.org/wiki/List_of_oldest_institutions_in_continuous_operation
https://en.wikipedia.org/wiki/List_of_oldest_institutions_in_continuous_operation
https://en.wikipedia.org/wiki/Streisand_effect
https://en.wikipedia.org/wiki/AACS_encryption_key_controversy
https://en.wikipedia.org/wiki/AACS_encryption_key_controversy
https://en.wikipedia.org/wiki/List_of_material_published_by_WikiLeaks
https://en.wikipedia.org/wiki/List_of_material_published_by_WikiLeaks
https://www.ncsc.gov.uk/collection/cyber-security-design-principles
https://www.ncsc.gov.uk/collection/passwords/updating-your-approach
https://www.ncsc.gov.uk/collection/passwords/updating-your-approach
https://scrt.network/graypaper
https://blogs.windows.com/windows-insider/2021/06/28/update-on-windows-11-minimum-system-requirements/
https://blogs.windows.com/windows-insider/2021/06/28/update-on-windows-11-minimum-system-requirements/
https://ecosystem.ipfs.io/
https://en.wikipedia.org/wiki/InterPlanetary_File_System

Appendix A: Survey participant documents

The following documents are included in this appendix on the following pages:

• Participant information sheet
• Survey schedule of questions

1

Participant Information Sheet
Dead Man’s Switches - with and without trust

Version 1.0

Date 2021-04-08

Who is conducting this research?
This research is being conducted as part of an MSc project in Software & Systems Security by
Lewis Westbury, a graduate student at Kellogg College, Oxford; under the supervision of Dr
Christopher Hargreaves.

● Lewis.Westbury@kellogg.ox.ac.uk
● Christopher.Hargreaves@cs.ox.ac.uk

Why is this research being conducted?
The specific definition of Dead Man’s Switch (DMS) in scope for this project describes a system
for managing the release of a piece of secret information under some very specific
circumstances. A whistle-blower or investigative journalist (leaker), may grant control of the
release of a specific secret to a DMS. The DMS will then attempt to monitor the wellbeing of the
leaker - and if certain conditions are not met (ie. if they are not alive and well) it will then release
the secret. Provided the leaker chooses a secret sufficiently damaging to their expected attacker,
this can be used to disincentivise a physical attack on the leaker.

The goal of the interview is to learn about use-cases where a DMS might have a positive impact
on the safety of an investigative journalist or whistle-blower.

Why have I been invited to take part?
As an investigative journalist with knowledge/experience of the needs of whistle-blowers, you are
able to provide key insights into the use cases for a DMS.

Do I have to take part?
No. Taking part is entirely voluntary. You can ask questions about the research before deciding
whether or not to take part. If you do agree to take part, you may withdraw yourself from the
study at any time, without giving a reason by advising us of this decision.

You may ask to skip any questions you would rather not answer.

https://www.cs.ox.ac.uk/people/christopher.hargreaves/
https://www.cs.ox.ac.uk/people/christopher.hargreaves/
mailto:Lewis.Westbury@kellogg.ox.ac.uk
mailto:Christopher.Hargreaves@cs.ox.ac.uk

If you decide to withdraw from the research, any information you have provided will be safely
deleted.

What will happen to me if I take part in the research?
You will first be offered an online consent questionnaire, to ensure that you understand what this
study is about, and that you wish to take part.

After that is completed, if you have consented to take part in the research, you will then be
interviewed about your experience as an investigative journalist - this will take place by phone
call or video call, or you may choose to fill out an online survey for yourself. If you choose to be
interviewed by phone call or video call, the researcher will fill out the online survey on your
behalf. The interview is expected to take approximately 30 minutes. (You can ask to stop or
pause the interview at any time.)

Are there any benefits or risks to taking part?
There are no direct benefits to your taking part, but you will have access to a copy of the final
dissertation if this would be of interest to you.

The main risks to your taking part would be that you or your sources might be identified in some
way, or that we might lose the personal data that you gave us. We are using an online
questionnaire service that is GDPR compliant, ISO 27001 certified, with strong protections for
your data. We will seek to anonymise data wherever possible, and only to store it with the
questionnaire service selected - which will also offer good protections for your data including
access control, encrypted storage, and safe deletion. We will not record names, even if
mentioned in the survey. You may ask us to redact any part of your answers, for any reason.
Please ask if you would like to know more about how we will do this.

What happens to the data I provide?
The data you provide is divided into two parts:

● Your consent form - this contains contact information for you, and confirmation that you
consent to take part in the research.

● Your interview form - this contains the answers that you gave in the interview.

Any data you provide which can be used to identify you is known as personal data.

Only your consent form is considered to contain personal data. However, both forms will be
stored with the approved, secure survey service - JISC online surveys. They will not be
downloaded to any other devices. Instead, they will be reviewed through that service only.

The information we are collecting is qualitative. Your interview will be summarised alongside
others and used to determine a set of use-cases for a Dead Man’s Switch. These insights will be
included in the final dissertation, and used to inform the rest of the project.

The final dissertation will be submitted to the university for grading, and will also be made
available online. We will take all possible care to ensure that no names or personal details will be
included in the final report.

What information will you collect?
● Some contact information about you, and your consent to take part in the research will be

stored in a JISC online survey - the consent questionnaire.
● Your interview answers will be stored in another JISC online survey.
● If interviewed in person, your answers will be transcribed into a JISC online survey by the

researcher.
● You may read the interview questions ahead of the interview, or to help you make your

decision to participate or not. They are to be distributed with this information sheet. If you
have not received them, please let us know.

How will you maintain confidentiality?
● Your records will be stored in an online, GDPR-compliant facility (JISC online surveys).
● Access control will be restricted to:

○ The researcher who conducted your interview.
○ The research supervisor.

Responsible members of the University of Oxford may also be given access to the data for
monitoring and/or audit of the study to ensure we are complying with guidelines, or as otherwise
required by law.

Your record will be pseudo-anonymised:

● Your interview record will not contain your name. Instead it will be assigned a unique id.
● That unique id will also be linked to your consent form (which contains your name).
● No names (yours, or any sources you mention) will be recorded in your interview

answers.
● If you accidentally include identifiable information in your answers, about yourself or any

other person, we will retrospectively remove that information.
● You may also ask us to redact any part of your answers if you feel they could be used to

identify you or another person, even without names.

How long will you hold my information for?
● Your interview answers will be stored until the project has been completed.
● Your consent information will be stored for 3 years from the point of publication of the

dissertation.

https://www.onlinesurveys.ac.uk/

Will the research be published?
The research may be published online - through social media or blog posts.

The University of Oxford is committed to the dissemination of its research for the benefit of
society and the economy and, in support of this commitment, has established an online archive
of research materials. This archive includes digital copies of student theses successfully
submitted as part of a University of Oxford postgraduate degree programme. Holding the
archive online gives easy access for researchers to the full text of freely available theses,
thereby increasing the likely impact and use of that research.

The research will be written up as a student’s dissertation.

On successful submission of the dissertation, it may be deposited both in print and online in the
University archives to facilitate its use in future research. If so, the thesis will be openly
accessible.

Who do I contact if I have a concern about the study
or I wish to complain?
If you have a question or concern about any aspect of this project, please speak to Lewis
Westbury, lewis.westbury@kellogg.ox.ac.uk (researcher), or Dr Christopher Hargreaves
christopher.hargreaves@cs.ox.ac.uk (supervisor), who will do their best to answer your query.

The researcher should acknowledge your concern within 10 working days, and give you an
indication of how they intend to deal with it.

If you remain unhappy or wish to make a formal complaint, please contact Professor Andrew
Martin, Chair, Computer Science Departmental Research Ethics Committee, Wolfson Building,
Parks Road, Oxford OX1 3QR or ethics@cs.ox.ac.uk

The chair will seek to resolve the matter in a reasonably expeditious manner.

Data protection
The University of Oxford is the data controller with respect to your personal data, and as such
will determine how your personal data is used in the study. The University will process your
personal data for the purpose of the research outlined above. Research is a task that we perform
in the public interest. Further information about your rights with respect to your personal data is
available from: https://compliance.admin.ox.ac.uk/individual-rights

mailto:lewis.westbury@kellogg.ox.ac.uk
mailto:christopher.hargreaves@cs.ox.ac.uk
mailto:ethics@cs.ox.ac.uk
https://compliance.admin.ox.ac.uk/individual-rights

Who has reviewed this study?
This study has been reviewed by, and received ethics clearance through the Computer Science
Departmental Research Ethics Committee at the University of Oxford.

They can be contacted at: ethics@cs.ox.ac.uk
Please quote approval number: CS_C1A_21_011

mailto:ethics@cs.ox.ac.uk

Interview Schedule
Dead Man’s Switches - with or without trust

Version 1.0

Date 2021-04-08

Introduction

This is a preview of the interview questions that will be asked as a part of the study
described in the accompanying material. If you have any questions, please feel free to ask
them before taking part.

This study has been reviewed by, and received ethics clearance through the Computer Science
Departmental Research Ethics Committee at the University of Oxford.
Approval number: CS_C1A_21_011

The Participant Information Sheet that should accompany this interview schedule contains
contact details for the researcher, supervisor, and ethics approval contact should you have any
questions or complaints.

Interview questions

A reminder: You may ask to skip over any question you do not wish to answer.

Please take care not to share personal anecdotes or personal history that could be used to
identify you. You may ask to have any information removed from your answers at any time.

What did the term Dead Man’s Switch mean to you before you encountered the materials
for this research?

For the purposes of this interview, a Dead Man’s Switch can be considered to mean any system
where a secret can be stored (not limited to digital systems, and including with colleagues,
friends, or strangers) for release on the failure of an aliveness check.

We’ll refer to Dead Man’s Switches as DMS going forwards.

Have you ever been unable to complete a piece of work because of threat of reprisal, or
substantiated reprisals?

Have you worked with any whistle-blowers or sources where there were reasons to fear
reprisals should their identities be uncovered?

Have you ever had reason to suspect that you were personally at risk of reprisal from
subjects of the investigative aspects of your work?

In your professional opinion, can secrets obtained through whistle-blowing or other
investigative means serve as a deterrent against reprisals?

Are there any DMS systems that you consider sufficiently safe for use professionally?

Have you ever employed a DMS or similar system?

(If no.) Do you consider that you might if the need arose?

(If yes.) Which system did you use?

(If yes.) Was it required to serve as a deterrent against reprisals?

(If yes.) Do you consider that successfully prevented those reprisals?

(If no.) What would you have changed about it to meet your needs?

What assurances would you accept that a DMS system is resistant to the following:

Physical or digital assaults to make it unavailable?

Physical or digital assaults to retrieve its stored secrets or alter its behaviour?

Bribery to retrieve its secrets or alter its behaviour?

How would you decide whether to trust the operator of a DMS?

What are the consequences of a DMS releasing a secret before it was required to?

What are the consequences of a DMS releasing a secret after it was required to?

What are the consequences of losing confidentiality of a secret stored in a DMS?

What are the consequences of losing the ability to access or communicate with a DMS?

What are the consequences of the secret stored in a DMS being altered?

Do you have any other thoughts or comments that you would like to add to help clarify
the required properties of a DMS?

Appendix B: Threat model report for a generic DPS

The threat model shown on the following pages was generated in Threat Dragon to represent a generic DPS.

Components included:

Table 1: Components in the generic DPS model

Component Role

Initialiser Component that handles the secret initially provided by the subject. Arranges safe
communication and storage of the secret, and establishes a method for the DPS to check the
well-being of the subject.

Secret store Component that stores the subject’s secret in such a way that it can be extracted only
when the right conditions are met.

Aliveness checker Component that can monitor evidence of the subject’s well-being, and able to activate or
suppress the secret extractor dependent on the subject’s state.

Secret extractor Component that can retrieve the secret from the secret store, and share it to the
publishing medium.

Publishing medium Either a public medium where the secret can be published, or direct communication of the
secret to specific recipients.

1

Threat model report for Generalised DPS model

High level system description

Owner:
Lewis Westbury
Reviewer:
Contributors:

Very generalised implementation of a Dead Person Switch, describing the main components
and the data �ows between them.

High level DPS components

Subject (External Actor)

Description:
Owner of the DPS, and owner of the Secret.

Spoo�ng identity of the subject
Spoo�ng, Open, High Severity

Subject DPS initialiser DPS secret store

DPS aliveness
checker

DPS secret
extractor

Publishing medium

Input secret

Heartbeat

Store secret

Activate

ExtractInitialise checker

Operational data store

Store Retrieve

Yield

Publish

Description:
If the subject's identity is spoofed, it may be possible for an attacker to submit false
well-being information about them - this could then be used to suppress the
activation of the DPS secret extractor, and prevent the switch from releasing the
secret in the absence of the real subject.

Mitigation:

DPS initialiser (Process)

Description:
Stores the user’s secret in the store, and establishes a regular aliveness check.

Spoo�ng the DPS initialiser
Spoo�ng, Open, High Severity

Tampering with DPS initialiser
Tampering, Open, High Severity

Information disclosure from the initialiser
Information disclosure, Open, High Severity

DoS of the DPS initialiser
Denial of service, Open, High Severity

Description:
An attacker that spoofed the initialiser could prevent the subject from succesfully
storing their secret.

Mitigation:

Description:
By succesfully tampering with the initialiser, an attacker could cause it to store a
modi�ed/empty secret, or fail in any number of ways during DPS creation.

Mitigation:

Description:
In this design, the initialiser brie�y knows and stores the subject's secret. An
attacker with access to the console may be able to extract operating information
from the intialiser and learn the secret as it is delivered.

Mitigation:

Description:
If the initialiser is made unavailable, the subject will not be able to create a DPS and
store their secret. This could be achieved by overwhelming it with requests to
initialise new DPS instances.

Mitigation:

DPS secret store (Data Store)

Description:
Protects the user’s secret until required.

Tampering of the secret store
Tampering, Open, High Severity

Information disclosure from the secret store
Information disclosure, Open, High Severity

DoS of the secret store
Denial of service, Open, High Severity

Description:
If the secret store is tampered, the subject's secret could be erased or (less likely)
modi�ed. This prevents the subject's secret from being released when required.

Mitigation:

Description:
If the store leaks information, the subject's secret could be released early.

Mitigation:

Description:
If the secret store is made unavailable, it may not be possible to store the subject's
secret, or the secret may not be available for extraction at the appropriate time.

Mitigation:

DPS aliveness checker (Process)

Description:
Periodically con�rms that the user is alive and well.

Spoo�ng the aliveness checker
Spoo�ng, Open, High Severity

Tampering with the aliveness checker
Tampering, Open, High Severity

DoS of the aliveness checker
Denial of service, Open, High Severity

Description:
If an attacker succesfully spoofs the aliveness checker service, they could cause the
Subject to submit their well-being information to the spoofed service, rather than
the real one. The real one will then cause the release of the subject's secret.

Similarly, a fully spoofed aliveness-checker could submit activation or suppression
instructions to the DPS secret extractor, causing either early release of the secret or
preventing its release.

Mitigation:

Description:
If tampered with, the aliveness checker could be used to cause early release or
prevent the release of the subject's secret.

Mitigation:

Description:
A successful DoS attack against the aliveness checker prevents the subject's well-
being information from being processed by the DPS. (This could be achieved by
overhelming the checker with requests, either nonsense, or replays of previously
accepted submissions.) Without suppresion information from the checker, the
secret extractor could then publish the subject's secret early.

Mitigation:

DPS secret extractor (Process)

Description:
Extracts the user’s secret if the user is not determined to be alive and well.

Elevation in the secret extractor
Elevation of privilege, Open, High Severity

Tampering with the DPS secret extractor
Tampering, Open, High Severity

Input secret (Data Flow)

Description:
The subject creates an instance of a DPS by providing a secret to store.

No threats listed.

Heartbeat (Data Flow)

Description:
The subject provides evidence of their well-beling to the DPS.

No threats listed.

Description:
It ought to be very di�cult to reach the secret extractor, but an attacker that
succeeds should be able to cause the early release of the subject's secret, or
prevent it from being release.

Mitigation:

Description:
If an attacker tampers with the DPS secret extractor they could cause early release
of the subject's secret or prevent its release at the right time.

Mitigation:

Store secret (Data Flow)

Description:
The DPS initialiser stores the Subject's secret.

No threats listed.

Activate (Data Flow)

Description:
Suppresses the DPS secret extractor if the subject is alive and well. Otherwise, activates it.

No threats listed.

Extract (Data Flow)

Description:
The DPS secret extractor requests the Subject's secret from the DPS secret store.

No threats listed.

Initialise checker (Data Flow)

Description:
The DPS initialiser creates the DPS aliveness checker, with enough information to be able to
recognise well-being signals from the Subject.

No threats listed.

Operational data store (Data Store)

Description:
Operational data store contains information required to accept/reject the Subject's well-
being information.

Tampering with the operational store
Tampering, Open, High Severity

Information disclosure from the operational store
Information disclosure, Open, High Severity

DoS of the operational store
Denial of service, Open, High Severity

Description:
Tampering with the store could cause alterations to the subject's information -
making it impossible for the DPS to recognise well-being from the real subject, or
allowing it to accept false subject well-being information.

Mitigation:

Description:
Information leaked from the operational store could be used to generate false well-
being information about the subject. This, if then fed in to the DPS aliveness
checker could prevent the release of the subject's secret even in their absence.

Mitigation:

Description:
if made unavailable through denial of service, the aliveness checker will fail to
function - as it cannot recognise the subject's well-being information. In turn this
could cause the early release of the subject's information, as the DPS secret
extractor will activate in the absence of a suppressing instruction from the DPS
aliveness checker.

Mitigation:

Store (Data Flow)

Description:
The DPS aliveness checker stores initial operational data to help it accept well-being data
from the subject.

No threats listed.

Retrieve (Data Flow)

Description:
Data is the operational data store is used to accept or reject well-being data from th S

No threats listed.

Yield (Data Flow)

Description:
The DPS secret store delivers the requested secret to the DPS secret extractor.

No threats listed.

Publish (Data Flow)

Description:
The DPS secret extractor publishes data to the Publishing medium.

No threats listed.

Publishing medium (out of scope External Actor)

Description:
A public place to share the secret, or sharing by communication to speci�c individuals.

Out of scope reason:
Security issues at the publishing medium, other than availability, are considered out of scope.
The publishing medium is more often than not a public resource - and data pushed here
should be visible to anyone.

C-evaluated-solutions README

1

Appendix C - evaluated solutions

This Appendix contains tables showing the DPS solutions evaluated by this thesis.

These solutions are divided into 3 categories:

1. hosted solutions,
2. distributed applications (dApps), and
3. open source solutions.

Each solution is summarised in a table per category (Tables 01 - 03), and all solutions are evaluated against the requirements for DPS
proposed by this thesis in comparison and scoring tables (Tables 04 - 05).

List of tables

01 - Hosted solutions Consumer hosted DPS solutions.
02 - dApp solutions Distributed application DPS solutions.
03 - Open source solutions Open source DPS projects.
04 - Evaluations by requirement Solutions evaluated by requirements for a DPS.
05 - Scored evaluations Solutions scored against requirements, based on the evaluations in Table 04.

Notes DPS requirements A reproduction of the requirements for a DPS, as defined in the thesis body, are provided
at the end of this appendix.

C-evaluated-solutions 01 - hosted solutions

2

Appendix C Table 01 - hosted solutions
Solution URL Privacy policy Twitter Last tweet Contact Contacted Status Year Summary Technicals Use cases Disclaimers Notes More info
DeadMansSwitch https://www.

deadmansswitc
h.net

N/A @stochastic 2020-06-13 hi@stochastictechnologies.com
info@stochastic.io

2021-07-27
2021-08-10

Contacted 2017 A system that checks for signs of
life, and if not met, sends a
number of emails to chosen
recipients.

Not known * end of life needs (ie. messages
for loved ones)

"Dead Man's Switch is provided
without any guarantees of
anything, not even that it will do
its job properly"
"this service is meant for casual
use by the average person.
Please don't use the service if
you need strong guarantees of
privacy, e.g. if you are a
whistleblower or any similar life-
and-death situation. It is NOT
meant to safeguard against high-
value messages."

Mediums:
* web push notification, telegram, email, sign in
* publish to: email

DeadMan http://www.
deadman.io/

N/A @m3ntat 2016-01-13 http://www.deadman.io/feedback2021-07-27 Contacted 2012 A system that checks for a
response, and distributes
documents by email if it does not
receive that response.

* Hosted on Google App Engine
* Written in Python
* Twilio & send grid integrations

* whistleblowers
* wilderness excursions (missing
persons)
* shut-ins
* the unknown
* end of life needs

"Deadman doesn't provide
heath, life, auto, etc. insurance.
It provides the kind of insurance
that keeping a fire-extinguisher
in your house provides or having
a spare tire in your car."

Mediums:
* email, txt, phone
* attach files
* using: twilio, sendgrid

https://news.
ycombinator.
com/item?
id=4381905

DeadManTracker https://www.
deadmantracke
r.com/

https://www.
deadmantracker.
com/privacy-
policy

@DeadManTracker 2021-05-19 support@deadmantracker.com2021-07-27 Responded 2019 A service that automatically
contacts your friends and/or
family in the event that
something happens to you.

* Hosted on AWS
* Payment through Stripe / Google
/ Apple

* missing persons (inc. location
tracking)

Mediums:
* email, txt, phone
* attach files
Also a dedicated app, with a discreet mode.

Letters Cloud https://letters.
cloud/

N/A (mentioned) N/A N/A anomia@protonmail.com2021-07-27 Responded 2020 A service that allows you to
create messages to be sent,
should you stop visiting your
trigger link.

* Compartmentalised design * any "This is the place, this is the
secret server."

At time of writing, neither komprom.at or letters.
cloud was functional:
"The system is being upgraded to increase
capacity and resiliency, enhance your calm. We'll
be back soon!"

Mediums:
* email or tweet
* aliveness checks by URL

WeCroak https://www.
wecroak.com/

https://www.
wecroak.
com/privacy-
policy

@WeCroakApp 2021-07-18 N/A N/A N/A 2018 Advice service. N/A N/A Not a DPS!

Afternote https://www.
afternote.com/

https://www.
afternote.
com/privacy-
and-disclaimer

@AfternoteTweets 2017-07-14 https://www.afternote.com/2021-07-27 Contacted 2017 End of life planning, granting
access to trustees.

N/A * end of life needs (farewell msgs,
funeral arr.)

Not a DPS!

BeRemembered https:
//beremembere
d.com/

https:
//beremembered
.
com/more/privac
y-policy

@BeRemDotCom 2015-09-02 https://beremembered.com/contact2021-07-27 Contacted 2016 End of life planning, granting
access to trustees.

N/A * end of life needs (farewell msgs,
funeral arr.)

Not a DPS!

MyWonderfulLife https://www.
mywonderfullife
.com/

https://www.
mywonderfullife.
com/customer-
service-faq

N/A N/A N/A N/A N/A 2009 Planning service. N/A * end of life needs (farewell msgs,
funeral arr.)

Not a DPS!

https://www.deadmansswitch.net/
https://www.deadmansswitch.net/
https://www.deadmansswitch.net/
https://twitter.com/stochastic
http://www.deadman.io/
http://www.deadman.io/
https://twitter.com/m3ntat/
http://www.deadman.io/feedback
https://news.ycombinator.com/item?id=4381905
https://news.ycombinator.com/item?id=4381905
https://news.ycombinator.com/item?id=4381905
https://news.ycombinator.com/item?id=4381905
https://www.deadmantracker.com/
https://www.deadmantracker.com/
https://www.deadmantracker.com/
https://www.deadmantracker.com/privacy-policy
https://www.deadmantracker.com/privacy-policy
https://www.deadmantracker.com/privacy-policy
https://www.deadmantracker.com/privacy-policy
https://twitter.com/DeadManTracker
https://docs.google.com/document/d/1loQo6IYvScBtdhHal5i-DSLTO4FLntHeWy--OcJO5e0/edit?usp=sharing
https://letters.cloud/
https://letters.cloud/
https://docs.google.com/document/d/1mAFZFxwRWCBTyvHx-lpgys6aJQaHP3D-6XCcOM5YVP0/edit?usp=sharing
https://www.wecroak.com/
https://www.wecroak.com/
https://www.wecroak.com/privacy-policy
https://www.wecroak.com/privacy-policy
https://www.wecroak.com/privacy-policy
https://www.wecroak.com/privacy-policy
https://twitter.com/WeCroakApp
https://www.afternote.com/
https://www.afternote.com/
https://www.afternote.com/privacy-and-disclaimer
https://www.afternote.com/privacy-and-disclaimer
https://www.afternote.com/privacy-and-disclaimer
https://www.afternote.com/privacy-and-disclaimer
https://twitter.com/AfternoteTweets
https://www.afternote.com/
https://beremembered.com/
https://beremembered.com/
https://beremembered.com/
https://beremembered.com/more/privacy-policy
https://beremembered.com/more/privacy-policy
https://beremembered.com/more/privacy-policy
https://beremembered.com/more/privacy-policy
https://beremembered.com/more/privacy-policy
https://twitter.com/beremdotcom
https://beremembered.com/contact
https://www.mywonderfullife.com/
https://www.mywonderfullife.com/
https://www.mywonderfullife.com/
https://www.mywonderfullife.com/customer-service-faq
https://www.mywonderfullife.com/customer-service-faq
https://www.mywonderfullife.com/customer-service-faq
https://www.mywonderfullife.com/customer-service-faq

C-evaluated-solutions 02 - dApp solutions

3

Appendix C Table 02 - dApp solutions
Solution Year URL Article Source Updated Description Technologies and components Disclaimers Notes
KillCord 2018 https://killcord.io/ https:

//github.
com/nomas
ters/killcord

2021-07-16 Killcord is a tool used to build resilient deadman's
switches for releasing encrypted payloads. In its
default configuration, killcord leverages ethereum
and ipfs for censorship resistance. The killcord
project owner hides a secret key from the world
by checking in to the killcord smart contract on
ethereum. If the owner stops checking in after a
period of time, the killcord is triggered and the
secret key that decrypts an encrypted payload is
published.

* ipfs for decentralized, immutable, peer-to-peer
storage of the encrypted payload
* an ethereum smart contract for trustless and
censorship resistant application state.
* a hidden publisher written in go that
communicates with the ethereum smart contract
and publishes the ipfs stored encrypted payload
key in the event that the killcord owner stops
checking in.
* a client killcord cli written in go meant to run on a
personally controlled system that bootstraps the
entire killcord system and allows for checkins.

WARNING This software is in early
alpha. Please do not rely on this with
your life. Though great care has
been taken to ensure that this code
is as well structured and straight-
forward as possible, it has not
undergone proper peer-review and
could have both minor and major
bugs that undermine the integrity of
the system.

Use of ethereum and IPFS provides a lot of the
integrity and availability required, but as we've seen
before - ethereum can't keep secrets, it's a public
blockchain and smart contract data and state are
agreed by consensus. KillCord's solution is to
operate a separate, hidden, publisher - which stores
the decryption key, checks the state of the smart
contract to determine aliveness, and does the work
to decrypt and publish the secret if the user is no
longer available.

Kimono 2018 https://kimono.
network

https://medium.
com/@pfh/kimono-
trustless-secret-
sharing-using-time-
locks-on-ethereum-
8e7e696494d

https:
//github.
com/hillstre
etlabs/kimo
no

2018-05-29 Kimono is a protocol that aims to accomplish
time-locking without spending significant compute
resources, without requiring multiple actions by
the creator of the time-lock, and without trusting a
single third party with the process. The platform
uses a commit and reveal scheme but distributes
the secret for each piece of data across a network
of peers who share it with the public only once the
time-lock is complete.

* relies on ethereum blockchain smart contract to
manage
* uses SSSS to split and distribute the decryption
key amongst N revealers
* uses IPFS to distribute the secret fragments to the
revealers, encrypted for them
* uses the smart contract to award prize money as
incentive for behaving appropriately
* uses a combiner to assemble the decryption key
from K fragments

When the revealBlock is added to Ethereum (i.e.
when the time-lock is complete), revealers race to
publish the decrypted version of their secret
fragment to the Kimono smart contract. Trustless is
a strong word. The protocol incentivizes revealers
to reveal their fragments after the time-lock, and as
soon as possible.

kimono.network is apparently discontinued.

SilentDelivery 2019 https://arxiv.
org/pdf/1912.07824.
pdf

The protocol maintains shares of the decryption
key of the private information of an information
sender using a group of mailmen recruited in a
blockchain network before the specified future
time-frame and restores the information to the
information recipient at the required time-frame.

SilentDelivery offers a protocol with 2 main
advantages over Kimono: silent recruitment, and
dual-mode execution.

* managed by an ethereum smart contract
C_agent
* still uses SSSS to split and distribute the
decryption key amongst N mailmen
* mailmen register with C.newMailman() with
Whisper public key + deposit

Strawman protocol:
* TIDS.send: sender creates a new service with C.
newService()
* fragments are sent to mailmen off-chain (Whisper)
* TIDS.pend: mailmen can C.reportPremature()
and split a share with the sender
* TIDS.deliver: all mailmen C.revealShare()
* the recipient can C.revealReceipt() if satisfied

Seems to advance the field by creating a
marketplace for participants (revealers, here called
mailmen), and a system for 'silent recruitment' -
without making clear on a public blockchain who the
participants are.

This also divides the protocol into lightweight and
heavyweight modes. In lightweight mode, the gas
consumed remains at O(1) (ie. does not scale with
the number of mailmen). Heavyweight mode is only
invoked if a participant issues a challenge.

TIDS = timed information delivery service

Not included in main thesis - this solution improves
on Kimono's approach, but isn't a significant enough
departure.

https://killcord.io/
https://github.com/nomasters/killcord
https://github.com/nomasters/killcord
https://github.com/nomasters/killcord
https://github.com/nomasters/killcord
https://kimono.network/
https://kimono.network/
https://medium.com/@pfh/kimono-trustless-secret-sharing-using-time-locks-on-ethereum-8e7e696494d
https://medium.com/@pfh/kimono-trustless-secret-sharing-using-time-locks-on-ethereum-8e7e696494d
https://medium.com/@pfh/kimono-trustless-secret-sharing-using-time-locks-on-ethereum-8e7e696494d
https://medium.com/@pfh/kimono-trustless-secret-sharing-using-time-locks-on-ethereum-8e7e696494d
https://medium.com/@pfh/kimono-trustless-secret-sharing-using-time-locks-on-ethereum-8e7e696494d
https://medium.com/@pfh/kimono-trustless-secret-sharing-using-time-locks-on-ethereum-8e7e696494d
https://github.com/hillstreetlabs/kimono
https://github.com/hillstreetlabs/kimono
https://github.com/hillstreetlabs/kimono
https://github.com/hillstreetlabs/kimono
https://github.com/hillstreetlabs/kimono
https://arxiv.org/pdf/1912.07824.pdf
https://arxiv.org/pdf/1912.07824.pdf
https://arxiv.org/pdf/1912.07824.pdf

C-evaluated-solutions 03 - open source solutions

4

Appendix C Table 03 - open source solutions
Project URL Created Last updated Languages, tech, libs Project description Short summary Initial notes Confidentiality Integrity Availability Suggested mitigations
skickar/DeadManSwitch https://github.

com/skickar/DeadManSwi
tch

2019-12-08 2019-12-08 * Python
* AES (pyAesCrypt)
* Twitter (twint)

A switch to encrypt a file if you
don't tweet a keyphrase in a
certain time period

A python script that can be used to
encrypt a user secret (and delete the
original) if a keyphrase is not tweeted from
a given account in a certain amount of
time. (Possible use could be to conceal
damning evidence.) It could also be
adapted to decrypt a user's file if the
keyphrase is not tweeted - so releasing a
secret.

Requires a little hands-on - some lines are
commented so the script will initially encrypt the
user's secret. On subsequent runs, the
commenting needs to be altered to decrypt the
secret (if conditions are not met).

If the Twitter account has not tweeted at all, it
will immediately exit, too (seems to support the
initial encryption usage).

* Decryption key is held in RAM, could be
leaked or lost.
* Deleted file is not zeroed.

* Encrypted secret on filing system is dependent
on OS protections, could be manipulated.
* State is held in RAM for lengths of time. Could
be manipulated.

* Vulnerable to power cut, disconnection.
* Could potentially run on a remote server,
which could make it more difficult to attack
(DoS) until found. However, it would need a
publishing capability.
* Twitter API could be spoofed or the user's
account compromised, to control the release.

* Implement publishing capability to allow the service to run on a
remote server.
* Check SSL certs to prevent MITM attack on Twitter API.

h313/dead-mans-switch https://github.
com/h313/dead-mans-
switch

2017-04-26 2018-06-12 * Python
* Web server (flask)

A dead man's switch which will
send out a prerecorded
message via email or SMS to
predetermined people

A python web service that accepts a
POST of a predefined password. If this
has not been received after a day, it
emails a predefined message to a given
email address.

Makes no attempt to encrypt the message,
password, or target email address.

* Secret and password are both stored in
plaintext. Dependent on OS protections to
prevent them being read.
* Password does not mutate, and is POSTed to
the endpoint - this coiuld be intercepted if SSL
and cert checking not enabled.

* Secret on filing system is dependent on OS
protections, could be manipulated.

* Vulnerable to power cut, disconnection. * Require SSL and certificate checking.
* As the service can run remotely, it might be possible to conceal
the purpose of the server that runs it - making it more difficult to
DoS.

deadmenswitch/dms

NB. This solution is also a dApp.

https://github.
com/deadmenswitch/dms

2017-10-22 2017-10-23 * Solidity (smart contract)
* Web app (node)
* Ethereum blockchain
* Truffle (dev & testing
environment)

This is a simple project
implementing Dead Man's
Swtich at Ethereum Blockchain

A web server wraps access to a smart
contract (DMSContract). This stores a
map of switch configurations.

Nice - uses a simple smart contract running on
Ethereum - benefitting from guaranteed
execution, and integrity protections from the
blockchain.

* Smart contracts can't really hold secrets - their
state is known to the EVMs on the nodes that
execute them - and a tampered EVM could be
persuaded to give up the data held by the
contract.

* Good - the blockchain has our back, and won't
allow the contract to be altered. The contract
itself also checks its map when
CreateDMSContract is called, and won't act (ie.
won't overwrite) if the sender already has a
switch.

* Good - this runs as a smart contract on a
distributed network. It's very difficult to attack
availability.

* Put visibility keywords against functions (default for functions in
Solidity is public).
* Function getDataFromAddress checks msg.sender ==
beneficiary, but not the expiry. Even if the web app takes care of
this, it should be enforced at contract level.
* Use block.timestamp (alias = now) to get the current
timestamp.
* Seek a better way to control the secret itself. One possibility is to
encrypt the secret for a known recipient. This won't prevent early
release, but it will mitigate the fact that the data held in the
contract isn't secret.
* Of course, this shifts responsibility for the decryption key to that
person, so also consider resilience, and perhaps a key sharing
scheme such as SSSS to distribute fragments that can be used to
decrypt the secret amongst a larger group.
* You'll still need to think about their resilience.
* Alternatively, explore secret contracts, eg. using the SECRET
network.
This all goes a bit beyond what you might fairly or reasonably
expect to get done during a weekend hackathon.

EsmailELBoBDev2/Dead-man-s-switch https://github.
com/EsmailELBoBDev2/
Dead-man-s-switch

2020-04-27 2020-12-10 * Python
* Keyring

It's an app that sends emails to
all people you select after you
die in case you wanted to say
last words or there is info like
bank accounts or your PC
password or anything you
wanted to say

A script that accepts a password. It's
checked against the OS keyring service,
and if correct, the date for release of the
user's secret is pushed back by a day. If
the user misses a day, the secret is sent
by SMTP to a predetermined recipient.

Nice to see OS keyring facility used here. Even
if imperfect, this makes it a lot harder to
manipulate the release of the secret. However,
data.txt contains the control dates for "today"
and "tomorrow", so they could easily be
manipulated to get a different behaviour at next
run; and the secret itself is in plaintext in the
code so easy to get hold of.

* The password is stored in the operating
system's keyring service - which is a step up
from keeping things in plaintext on disk. It's
probably not foolproof, but it's better than not.
* The secret itself is stored in plaintext in the
python.

* The secret is stored in plaintext in the python,
dependent on OS protections, could be
manipulated.

* data.txt contains the dates which control the
application. These could be manipulated to
cause late/early release the next time the script
is run.
* The script needs to be run regularly to operate.

* Adapt the script for remote usage - ie. by implementing a web
service.
* Use OS keyring to manage encryption/decryption for the secret
too.

dmp1ce/DMSS https://github.
com/dmp1ce/DMSS

2016-05-12 2018-03-30 * Haskell An automated system for
securely and reliably sharing
secrets to trusted individuals
as it becomes necessary.

This library is not production-
ready and should not be used
for purposes where
cryptographic failure may
endanger anyone's life, liberty
or pursuit of happiness.

An application to assist in the SSSS
fragmentation of a symmetric key used for
encryption / decryption of a secret, the
distribution of those fragments to trustees
(participants), and tracking the user's
aliveness - notifying the trustees if the
user is not responsive.

It's reasonably centralised and manages
knowledge of a number of users as a part of
the system. It seems to have some
cryptographic functions. Implemention doesn't
seem to be complete.

The subject can split a secret using SSSS and
distribute that to a number of recipients.
Messages are sent as PGP emails.

The subject provides an aliveness signal to the
service, and if they miss that signal the service
notifies the recipients - who can then
recombine their SSSS fragments to reconstruct
the secret.

N/A this project is incomplete N/A this project is incomplete N/A this project is incomplete N/A this project is incomplete

petertodd/timelock https://github.
com/petertodd/timelock

2011-04-06 2021-03-07 * Python Timelock encryption
incentivised by Bitcoin. Create
a secret key that can be
decrypted in a known amount
of time using parallel-serial
hash chains. The chains are
constructed such that Bitcoin
addresses can be derived from
them and bounties placed,
incentivizing third-parties to
crack the timelocks.

It looks like a series decryption, but the
midpoints are all bitcoin addresses and
keys - so incentivising the decryption.

Interesting approach to incentivisation - feels
like pass the parcel with a bag of sweets at the
centre. This isn't really a DPS implementation -
but it is a relevant illustration of timelock
encryption using serailised computation.

https://github.com/skickar/DeadManSwitch
https://github.com/skickar/DeadManSwitch
https://github.com/skickar/DeadManSwitch
https://github.com/h313/dead-mans-switch
https://github.com/h313/dead-mans-switch
https://github.com/h313/dead-mans-switch
https://github.com/deadmenswitch/dms
https://github.com/deadmenswitch/dms
https://github.com/EsmailELBoBDev2/Dead-man-s-switch
https://github.com/EsmailELBoBDev2/Dead-man-s-switch
https://github.com/EsmailELBoBDev2/Dead-man-s-switch
https://github.com/dmp1ce/DMSS
https://github.com/dmp1ce/DMSS
https://github.com/petertodd/timelock
https://github.com/petertodd/timelock

C-evaluated-solutions 04 - evaluations by requirement

5

Appendix C Table 04 - evaluations by requirement
Type Solution Confidentiality [1] Awareness [2] Timing [3] Resilience [4] Affordability [5] Durability [6] Explainability [7] Visibility [8]
Hosted DeadMansSwitch It's reasonable to assume the secret is

treated confidentially. However even if it
is encrypted, the service retains a key
that can be used to decrypt it -
(notwithstanding issues of configuration,
about which information is not known)
making it confidential to all except the
service itself, and any system
administrators with access to the
service's keys. No privacy policy is
available.

The system can check aliveness through
a number of channels: web push
notification, telegram, email, sign in.

A disclaimer states that the switch does
not guarantee "anything, not even that it
will do its job properly". Whilst likely
written this way as a legal defense, this
reduces confidence that the switch can
reliably meet this requirement. No data
on uptime, and no SLA are provided.

The disclaimer on the site clearly states
that the service is not intended for high-
value messages. The switch is unlikely
to prove resilient to high or even medium
capability threats to the confidentiality of
the secret, integrity or availability of its
service.

The switch offers a free tier, and a $50
single payment premium service. Both
are considered affordable to a journalist
or an organisation they work for.

The only paid tier is a lifetime
membership. Unfortunately, this means
that the service must steadily gain
customers to maintain income. If it
cannot, it becomes expensive to
maintain.

As with other hosted solutions the
architecture and code is not published -
making it difficult to evaluate.

No information suggests that the service
will indicate whether a switch has been
created by a given subject, or about a
given threat, and whether it is active.

Hosted DeadMan The system is hosted on Google App
Engine, and protections for that platform
apply (dependent on good
configuration). Although Dead Man does
not have a privacy policy, Google's is
substantial and GDPR compliant. It's
reasonable to assume that,
notwithstanding a misconfiguration, the
system is designed to restrict user secret
visibility to the service and its
administrators.

The system can check aliveness through
a number of channels, supported by
Twilio and SendGrid: email, SMS, or
phone.

The system is based on reliable
technologies (Google App Engine,
Twilio, SendGrid) and so is expected to
be able to deliver messages reliably.

Although composed from several
services considered to be resilient
(Google App Engine, Twilio, SendGrid),
the service itself was developed at a
hackathon and is likely best considered
a proof of concept. No information about
a threat model is available, and so it's
reasonable to assume the service is not
resilient to well-resourced threats.

The site advertises a free service. The service was created in 2012, and
does not seem to have been updated for
a while (as indicated by the fact that it is
no longer possible to sign in or create
accounts through the various
mechanisms offered). With no apparent
source of funding, it's likely that after
initially creation, this service has not
been maintained.

As with other hosted solutions the
architecture and code is not published -
making it difficult to evaluate.

No information suggests that the service
will indicate whether a switch has been
created by a given subject, or about a
given threat, and whether it is active.

Hosted DeadManTracker This is the only system surveyed that
has a full privacy policy. The system is
hosted on AWS - and protections for that
platform apply (dependent on good
configuration). Data is encrypted at rest,
although the service must retain a key to
decrypt it - making the user's secret
confidential to all except the service
itself, and any system administrators
with access to the service's keys.

The system can check aliveness through
email or push notification.

As an AWS hosted service, the system
is based on reliable technologies, so is
expected to be able to behave reliably.

The creator has shared priorities for a
threat model, and has placed high value
on system availability, and resilience to
casual threats. Hosting on AWS provides
that hhigh availability, and the design
has separated the trigger mechanism
from the rest of the service - to prevent a
denial of service attack on the website
from affecting delivery of secrets. The
creator acknowledges some personal
risk, noting that it's probably easier to
attack the operator or individual users of
the service, rather than the
infrastructure.

The service has a free tier (offering a
single switch), or a $10/year subscription
service with unlimited switches, file
storage, API access, and multiple
publishing mediums. Both are
considered affordable to a journalist or
an organisation they work for.

The service is currently maintained, and
the creator is responsive. The
subscription model allows for time and
costs to maintain the service.

The existence of a privacty policy goes
some way towards documentation that a
subject could use to determine whether
they trust the system with their secrets.
This system is assumed to follow a
classic design. Communication with the
operator revealed that it is hosted on
AWS, and that subject data is encrypted
at rest. However, as with other hosted
solutions the architecture and code is not
published - making it difficult to evaluate.

No information suggests that the service
will indicate whether a switch has been
created by a given subject, or about a
given threat, and whether it is active.

Hosted Letters Cloud Not a lot of information is available. A
short statement on the site's page
indicates how little information is
gathered by the system. Developers
have taken pains to ensure their own
identities are not listed. Whilst indicative
of respect for privacy, this could make it
more difficult to trust the system's
operators.

The user is given a URL to visit
regularly, called the trigger link.

Nothing is known about the service's
reliability with regard to timing, but the
description suggests that a missed
check-in followed by a determined
amount of time will result in messages
being sent.

The trigger link given to the user has
interesting security properties. Instead of
regularly reaching out to the user with a
reminder the service expects the user to
visit the trigger link. The trigger link is
considered a secret to be kept and used
by the user. This alters the challenge for
an attacker, making it more difficult to
learn about the user's activity with
Letters Cloud - as common
communication methods (email, SMS,
etc.) are not used. Other information
about the service's security properties
isn't available.

The service provides a free tier, and
content suggests a freemium pricing
model - however no information about
the cost of the premium service is
available, other than the intention to
make it possible to pay with
cryptocurrency.

The service seems to have fallen into
disrepair. Difficulties experienced signing
up to the service make it difficult to test.

As with other hosted solutions the
architecture and code is not published -
making it difficult to evaluate.

No information suggests that the service
will indicate whether a switch has been
created by a given subject, or about a
given threat, and whether it is active.

dApp KillCord KillCord's smart contract stores the
secret as an encrypted file on IPFS. As
the smart contract cannot protect the
decryption key, KillCord relies on a
hidden publisher - which must be able to
decrypt the subject's secret to release it.
The confidentiality of the publisher is
linked to the confidentiality of the user's
secret, and relies on the security
properties of the system it runs on.

The KillCord smart contract tracks the
subject's aliveness: The user's use of
Ethereum is considered a proxy for
aliveness. and it will only accept
evidence of wellbeing as a call to the
smart contract made with the identity of
the subject's cryptocurrency account.

The KillCord smart contract is
guaranteed to run by the Ethereum
network, however if the publisher can be
located and attacked, it may be possible
for an attacker to prevent release of the
secret at the appropriate time.

The smart contract is resilient against
attempts to compromise its integrity and
availability through the properties of the
cryptocurrency network. The user's
cryptocurrency account is used as the
identity to submit well-being check-ins to
the smart contract. If located, the
publisher (carrying the decryption key for
the secret) could be attacked to deny
service, alter the integrity of the secret
during publishing, or obtain the
decryption key and release the secret
early. IPFS is used for the release of the
encrypted secret, and its decryption key,
offering high availability and integrity.

Use of KillCord requires a small amount
of gas (Ethereum currency to be spent
on distributed computing) for the smart
contract, aliveness submissions, and
final publishing. This has points of
comparison to a subscription model.

Once a DPS is established, provided the
small amounts of gas required are paid
for, the network itself takes care of
maintenance. Durability depends on
continued support for EVM smart
contracts, the Ethereum blockchain, and
IPFS.

KillCord is fully described in articles and
papers, and its source code repository.
Although it relies on a number of
complex components, including a smart
contract, IPFS, and a hidden publisher -
it should be possible to explain in simple
terms. However, it is also anticipated
that most investigative journalists have
not developed sufficient expertise to
create and configure a DPS using the
command-line tools provided. This,
combined with the requirement to learn
about several complex aspects of the
system before trusting it, may make it
difficult to trust without advice from a
trusted person.

The encrypted secret on IPFS may serve
as a visible indicator that a KillCord
switch is in use, provided it were
advertised by the subject to indicate they
had created it.

C-evaluated-solutions 04 - evaluations by requirement

6

Appendix C Table 04 - evaluations by requirement
Type Solution Confidentiality [1] Awareness [2] Timing [3] Resilience [4] Affordability [5] Durability [6] Explainability [7] Visibility [8]
dApp Kimono Kimono first breaks the user's secret into

SSSS fragments, across a network of
N peers to share with the public only
once the time-lock is complete. Each
fragment is encrypted for its recipient
and distributed by IPFS. No individual
can reveal the secret, and K or more
of the participants would need to collude
to release the secret early.

N/A Kimono is a time-lock solution. It
would need to be adapted to serve as a
DPS.

The smart contract behaves reliably with
high availability - it's a good mechanism
for determining when to release the
secret. (As mentioned, Kimono is a time-
lock solution, though.) The participants
are incentivised to release their fragment
on time, and will be rewarded by the
smart contract for doing so.

At the heart of the solution is a K of
N network of peers. Resilience of the
system relies on the appropriate
behaviour of at least K participants.
This protects the confidentiality, integrity
and availability of the system. Secret
fragments are distributed by IPFS -
considered highly available and with
controls for integrity.

There's a balance between affordability
and timing/resilience of the system:
Assuming the only incentive for
participants is financial reward, the
subject must select a high enough
reward to make their network resilient
against bribes.

Durability depends on continued support
for EVM smart contracts, the Ethereum
blockchain, and IPFS.

Kimono is described in a formal paper,
but as its site is no longer available
simple explainers are not available. It
ought to be possible to describe but as
with KillCord, it relies on a number of
complex components and this, further
complicated by the need to trust a group
of participants, may require a subject to
spend time and effort understanding it
before they could trust it.

The encrypted secret on IPFS may serve
as a visible indicator that a Kimono time-
lock is in use, provided it were
advertised by the subject to indicate they
had created it. The distribution of SSSS
fragments to a number of participants
may also serve to indicate that Kimono is
in use, provided a party were sufficiently
interested to discover this on IPFS.

dApp SilentDelivery Extends the model of Kimono, providing
protections for the identities of recruited
participants (mailmen).

N/A As with Kimono, SilentDelivery is a
time-lock solution.

(As mentioned, SilentDelivery is a time-
lock solution, though.)

Additional resilience obtained through
silent recruitment of mailmen, from a
large network of registered possible
participants - making it significantly
harder to identify and compromise
participants.

Offers lightweight and heavyweight
mode (only used when a particular
mailmain is challeneged - ie. if they
appear to have released their fragment
early) - significantly reducing the cost of
operation.

Durability depends on continued support
for EVM smart contracts, the Ethereum
blockchain, and IPFS.

Whilst designed to be an improvement to
Kimono, SilentDelivery represents an
increase in complexity. It is described in
its paper as an open protocol, and that
protocol has several features that make
it complex to understand. For instance, it
can operate in multiple modes in order to
reduce the cost of the smart contract
activity that drives it. Similarly, the steps
that it takes to protect the anonymity of
participants in the network (mailmen)
push it further from being an intuitive
solution. A subject would have to spend
time and effort to understand it before
they could trust it.

SilentDelivery goes to lengths to protect
the identity of participants (mailmen).
However, as with Kimono, it distributes
the encrypted secret by IPFS - and this
may serve as a visibile indicator that it is
in use, provided the subject advertised
that they had created it.

OSS skickar/
DeadManSwitch

Holds the decryption key in RAM for the
duration of execution. The original secret
file is deleted (but not blitted).

If used as a DPS, this means interrupting
power (eg. by stealing the device) will
destroy the key. However, the deleted
file represents a risk as it may still be
recoverable.

Monitors Twitter API for a given
passphrase. Twitter activity is used as a
proxy for well-being.

If used as a DPS, Able to take action
(eg. to decrypt the secret) if the
monitored twitter account does not tweet
the required passphrase in a given time
period.

Interrupted power to the device (or
halting the process) can result in loss of
availability. Resilience against
confidentiality and integrity attacks are
dependent on the security properties of
the device that the application runs on.

Extremely affordable, requiring only
python installed on a very low power
device, and an internet connection.

This is a simple script, and not designed
for much longevity. It was last
maintained in 2019, and may well be
abandoned now.

Assuming the device is patched, the
application risks becoming out of date as
available python versions will eventually
deprecated and then become
unavailable.

The device and OS will need to be
patched and restarted regularly to
ensure that the runtime environment has
up to date security patches.

This is a simple script, and as the
subject must run it on their own device,
they are able to understand the extent to
which they can trust the system. It
performs a simple task that is easy to
explain.

However, it requires that the subject
have some familiarity with a command
shell to use, putting it into the realm of
those with at least some confidence
using linux-based systems.

Explaining its weaknesses and
limitations may also require some effort.

The script isn't designed to indicate to an
outsider that it is running (and doing so
might put it at risk).

OSS h313/
dead-mans-switch

Makes no attempt to encrypt the
message, password, or target email
address. Reliant on the security
properties of the server it's hosted on.

Operates as a web service, and receives
a POST of a password as a proxy for the
well-being of the user. If this is
interecepted or learned, the switch can
be suppressed.

Will take action if the password has not
been provided for a day.

Serves a POST endpoint that accepts a
password. No apparent rate limiting or
other protections on the endpoint mean it
makes itself a target for attack. (NB. rate
limiting could be implemented by a
firewall or other protection.) If succesfully
exploited, all CIA properties are at risk.

Runs on a single device, so not resilient
to interrupted power, which may result in
loss of availability.

Extremely affordable, requiring only
python installed on a very low power
device, and an internet connection.

As with other OSS projects, patching is
required for security patches to the OS
and software. If not maintained, this puts
application at risk of code rot from
breaking changes in python and
libraries.

This is a simple service, and does what it
needs to.

However, it requires that the user stand
up an instance of it, and manage that
service. This puts it beyond the reach of
many journalists, who shouldn't have to
develop these skills.

Explaining its weaknesses and
limitations may also require some effort.

This service isn't designed to indicate to
an outsider that it is running (and doing
so might put it at risk). However, it ought
to be possible to determine that the
service is running with a port scan or
crafted query - so it may be possible to
detect.

dApp deadmenswitch/
dms

Smart contracts can't really hold secrets
- their state is known to the EVMs on the
nodes that execute them - and a
tampered EVM could be persuaded to
give up the data held by the contract.

This means that the subject's secret, and
the identities of the subject and
beneficiary (recipient) aren't well
protected.

A web server facilitates subject's
interaction with the smart contract. A call
to the smart contract's kick function from
the subject's Ethereum identity is the
proxy for well-being, and serves to
increase the user's switch timeout.

This is driven by recipients of the
message calling getDataFromAddress
on the smart contract to see if the switch
they are beneficiary of has a message
for them.

NB. It seems as if a small bug in
getDataFromAddress will grant
beneficiaries immediate access to the
message without checking the expiry.

Benefits from distributed computing
across Ethereum blockchain - giving it
high availability, and integrity properties.

Thought to be reasonably affordable, this
smart contract isn't doing a lot of work.
However, it does have to store all
secrets and the identities for each switch
- storage costs gas, and this could
increase if the service were popular.

Longevity depends on the state of the
Ethereum blockchain. Provided it
continues to be mined, and proves a
valuable computing resource for many
other purposes, the switch will endure.

This is a more complex dApp, based on
the premise that a smart contract will do
some things reliably and with high
availability. Explaining this to a user may
require a complex understanding of
distributed apps and cryptocurrency.
Explaining its weaknesses, even more
so.

The existence of the smart contract
should serve to show that dms is in use.
However, this also has to disadvantage
of advertising the content of the secret,
too, as the EVM cannot protect its
confidentiality. If used, users are forced
to balance visibility of their switch
against confidentiality of its secret.

OSS EsmailELBoBDev2/
Dead-man-s-switch

It uses the OS keyring service, which
makes it a little harder to learn the
password required to suppress the
secret.

However, the secret itself is not
encrypted, and resides in python code.
Confidentiality of the secret relies on the
security properties of the OS.

The user enters the password in a
terminal on the machine the script is
running on. This is a proxy for the
subject's well-being.

data.txt contains the dates which control
the application. Manipulating it could
cause late/early release the next time
the script is run.

The script must be run regularly to
ensure a reliable service.

The data.txt file isn't encrypted or
protected, and contains the control dates
for "today" and "tomorrow", so they could
easily be manipulated to get a different
behaviour at next run; and the secret
itself is in plaintext in the code so easy to
manipulate. Similarly, any mechanism to
run the script regularly (for availability) is
also dependent on the OS for its
integrity.

Extremely affordable, requiring only
python installed on a very low power
device, and an internet connection.

As with other OSS projects, patching is
required for security patches to the OS
and software. If not maintained, this puts
application at risk of code rot from
breaking changes in python and
libraries.

This is a simple script that takes
advantage of the operating systems
keyring facility. This is a smart use of a
strong tool, but may also require some
explaining to a user to ensure they
understand what has been made safe
(especially in the light of the other
weaknesses of this design). As with the
other scripts, it requires the subject to
have some familiarity or confidence with
command-line based applications.

This script has no way to indicate that it
is running (and as the secret is stored in
the code itself, and its control dates are
stored in plaintext, doing so would put it
at risk of attack).

C-evaluated-solutions 04 - evaluations by requirement

7

Appendix C Table 04 - evaluations by requirement
Type Solution Confidentiality [1] Awareness [2] Timing [3] Resilience [4] Affordability [5] Durability [6] Explainability [7] Visibility [8]
OSS dmp1ce/

DMSS
It runs on a single server, so relies on
the security properties of the host OS.

The secret is initially split using SSSS,
and after that deleted from the subject's
computer. SSSS fragments are delivered
to recipients using PGP encrypted email.

Provided recipients behave
appropriately, fragments will not be
recombined until the right time.
Protection of the fragments relies on the
properties of the recipients devices and
operating systems.

The user will indicate their aliveness to
the system with an (as yet undefined)
signal. That hasn't been implemented
yet.

Provided the service is running, the
system will note a missed signal and
notify the recipients.

The design makes efforts to ensure that
the secret does not remain whole and
unencrypted in any one place. Instead, it
resides on recipient devices.

Resilience of the secret's confidentiality
ultimately relies on the participants
themselves. Integrity of the secret is
assured, as altered fragments will not
recombine correctly. SSSS is a K of N
threshold scheme - so provided only a
few fragments are altered or missing, the
secret can be reconstructed.

If the switch itself is attacked, it could be
made unavailable. In that instance,
participants might need to discover for
themselves that it had been attacked in
order to them collaborate and
reconstruct the secret.

Extremely affordable, requiring only
haskell installed on a very low power
device, and an internet connection. PGP
is a freely available technology.

Unlike other solutions, this design also
indicates that the system should make
regular checks to ensure that the
recipients still have their SSSS
fragments.

As with other OSS projects, patching is
required for security patches to the OS
and software. If not maintained, this puts
application at risk of code rot from
breaking changes in haskell and
libraries.

This seems to be an early phase of a
design for a system that will be hosted. It
relies on two complex concept: SSSS
and PGP - both of which can be
explained to users, but may require a
little effort to understand.

It is not known if this design will
eventually incorporate a signal to
indicate that it is in use.

Definitions of each requirement, as defined in the thesis body, are reproduced at the end of this appendix.

C-evaluated-solutions 05 - scored evaluations

8

Appendix C Table 05 - scored evaluations
Type Solution Confidentiality Awareness Timing Resilience Affordability Durability Explainability Visibility
Hosted DeadMansSwitch 1 2 2 1 3 1 1 0
Hosted DeadMan 1 2 3 1 3 0 1 0
Hosted DeadManTracker 2 2 3 2 3 3 2 0
Hosted Letters Cloud 2 2 2 2 3 0 1 0
dApp KillCord 2 3 3 2 3 3 2 2
dApp Kimono 3 0 3 2 3 3 2 2
dApp SilentDelivery 3 0 3 3 3 3 2 2
OSS skickar/DeadManSwitch 1 1 2 1 3 1 2 0
OSS h313/dead-mans-switch 0 1 2 1 3 1 2 0
dApp deadmenswitch/dms 1 3 2 1 3 3 2 1
OSS EsmailELBoBDev2/Dead-man-s-switch 0 1 2 0 3 1 2 0
OSS dmp1ce/DMSS 2 0 2 2 3 2 2 0

Scoring 0 Does not meet requirement, or no information available.
1 Shows awareness of the requirement, with significant room for improvement.
2 Partially meets the requirement, with some room for improvement.
3 Meets the requirement comprehensively, with little or no room for improvement.

C-evaluated-solutions Notes

9

[1] Confidentiality: A DPS must keep a user's secret confidential until it determines it is appropriate to release the secret.

[2] Awareness: A DPS must have a mechanism to check the subject's well-being, and a method to release the secret if the subject fails this test.

[3] Timing: A DPS should not release the subject's secret early (ie. whilst they are still alive and well), late (ie. too long after the subject has become
unresponsive), or never.

[4] Resilience: A DPS must assume the existence of, and protect against, attempts by hostile threats to compromise the secret's confidentiality and integrity,
and be resilient against attacks intended to compromise its availability (CIA properties).

[5] Affordability: A DPS should use affordable technologies to provide its functionality, not relying on resources beyond the means of the target subject
group.

[6] Durability: A DPS should be expected to last a significant amount of time (eg. the lifetime of a subject), with continued maintenance (including security
patches), support, or upgrade pathways if the technologies in use become obsolete.

[7] Explainability: A DPS must be presentable as a model that the target subject group can understand and trust.

[8] Visibility: A DPS must be able to present evidence that it is operational, to contribute to its deterrent effect.

Appendix D: Subjective logic detail
This appendix provides a brief overview of subjective logic, a technique for reasoning about trust
relationships between entities (or people) in networked groups.

Trust relationships are categorised as:

• Direct functional trust in a proposition (ie. A’s belief that participant B will behave appropriately)
• Indirect functional trust (ie. B informs A how likely they believe it is that C will behave

appropriately)
• Direct referral trust (ie. A’s trust in B’s advice about C)

Detail
In Trust Network Analysis with Subjective Logic, 2006, [1] Jøsang, Hayward, and Pope describe trust
opinions in terms of subjective logic. Jøsang’s 2016 book, Subjective Logic [2], is a valuable resource that
informs this in-depth exploration.

Each trust opinion is composed of a trust component (effectively a probability assigned to the proposition),
and a certainty component (a second-order probability, expressing confidence in the trust component).
Together, these form a trust opinion.

In an example where the subject has formed direct functional trust of N participants (ie. an opinion
of their behaviour), and wishes to combine that trust for the proposition “all participants will behave
appropriately for the DPS today,” this can be represented as:

O1 ∧ O2 ∧ ... ∧ ON

Here:

• Oi represents the subject’s opinion of person i.

NB. In terms from Subject Logic, this is an aleatory opinion, based on a frequentist situation (ie. each
day is a new opportunity to measure the behaviour of a participant in the DPS). This could be a little
misleading though, as it’s likely easier to behave correctly on a daily basis while the DPS is not ‘activated.’
Should the DPS be needed, the likelihood of events that might change the behaviour of participants
(blackmail, conflict of interest. . .) are increased - and this raises a possible second, epistemic opinion,
based on a non-frequentist situation - “On the day it’s needed, all participants in the DPS will behave
appropriately.”

When considering an unknown person, a subject may decide to seek the advice of an agency (ie. to
perform some background checks and determine how trustworthy they consider that person to be, or how
vulnerable to compromise they are). That trust can then be chained together:

O3 = O1 · O2

Here:

• O1 represents the subject’s direct referral trust (ie. of agency B’s opinion) - this could be based
on documentation about their background check process, or direct personal experience of their
previous recommendations.

• O2 represents agency B’s direction functional trust of C, a person the subject wishes to learn about
(eg. the agency’s opinion of C, based on a background check).

• O3 represents the subject’s new, indirect functional trust opinion of C.

NB. In theory, O1 could, in turn, be a chain composed of the subject’s trust in a certification authority
that has assured the agency’s processes, and the rating of a certificate that they have awarded to the
agency (which then leads to the question of how to develop some functional trust (direct, or indirect)
in the certification authority). The chain could be extended again to incorporate an understanding of
the reputation of the authority and knowledge of any registers of complaints, evidence of any lawsuits
suggesting poor practices, etc. See: Figure 1

Deciding when to stop adding layers of indirection is a difficult problem to solve.

When considering a network of participants, assuming that the subject works with an agency about which
they have a referral trust opinion. It’s possible to combine the agency’s opinions of each person in the

1

Figure 1: A longer chain of referrals

network without referral trust of the agency to determine the subject’s functional trust of the original
proposition:

(O1 · O2) ∧ (O1 · O3) ∧ ... ∧ (O1 · ON+1)

Here:

• ON represents the subject’s direct referral trust of the agency’s opinion.
• OX>1 represents the agency’s direct functional trust of person X − 1.

The predicate for these individual opinions is binomial (the opinion of it is that it is true or false, with a
given degree of uncertainty). The opinions are broken into components:

• bX = Belief mass
• dX = Disbelief mass
• uX = Uncertainty
• aX = The base rate (probability distribution in the absence of any beliefs)

These individual components can be visualised1 as a barycentric triangle, as illustrated in Figure 2.

Figure 2: Barycentric triangle visualisation of binomial opinion2

Consider this example:

• Domain X contains outcome x (Xavier, from the participant network, is compliant), and outcome
¬x (Xavier is not compliant).

• Domain Y contains outcome y (Yan, from the participant network, is compliant), and outcome ¬y
(Yan is not compliant).

1See also, the Opinion Visualiser, University of Oslo: https://folk.universitetetioslo.no/josang/sl/BV.html
2Reproduced from Subjective Logic [2], Jøsang, p25, Fig 3.1

2

The subject has formed an opinion of each of these positive outcomes (ωx, and ωy), and now would like
to form an opinion of their conjunction:

ωx∧y = (xy) (both Xavier and Yan are compliant in the domain X × Y)

This is the dotted, highlighted area inside the cartesian product of the domains, as illustrated in Figure 3.

Figure 3: Cartesian product of two domains3

As the opinions are independent, this is calculated by applying binomial multiplication, as described in
Subjective Logic [2], pp.101-102.

• Let: ωx = (bx, dx, ux, ax) (an independent opinion on x)
• Let: ωy = (by, dy, uy, ay) (an independent opinion on y)4

ωx∧y :

bx∧y = bxby + (1−ax)aybxuy+(1−ay)uxby

1−axay

dx∧y = dx + dy − dxdy

ux∧y = uxuy + (1−ay)bxuy+(1−ax)uxby

1−axay

ax∧y = axay

This can also be represented as: ωx∧y = ωx · ωy

This can be visualised5, and Jøsang provides an example in Subjective Logic [2] showing the multiplication
of two opinions. See: Figure 4

An interesting observation, which may be helpful in reasoning about the opinions a subject would have
to make when formally assessing a group of N participants in a DPS, emerges: The uncertainty of the
product falls between the uncertainties of the two opinions, and so expect to see an ‘averaging’ effect
where the outcome uncertainty is less extreme than any outliers.

System reliability
In section 7.2 of Subjective Logic [2], Jøsang describes application of subjective logic to system reliability.

A system, S, can contain a number of components, with dependencies on each other. Serial dependencies
in a reliability graph show components that must both function in order for the system to function,
whereas parallel dependencies represent components of a system where one or the other are required.

K of N systems are simple cases of a system that can be modelled with a reliability diagram.

For a K of N system, knowing K and N it’s possible to compose a rough and ready reliability network
using only these primitives.

eg. Figure 5 illustrates a participant network for K = 2, and N = 3, where x, y, and z represent the
compliance of the 3 participants in the network. This network can be represented as: (x∧y)∨(y∧z)∨(x∧z)

The application of subjective logic multiplication (for ∧) and co-multiplication (for ∨) would allow the
representation an opinion of the K of N network.

3Reproduced from Subjective Logic [2], Jøsang, pp.101-102, Fig 7.1
4This represents a small typo correction from the description in Subjective Logic, which has used ωx for both opinions.
5See also, the Operator Visualisation Tool, University of Oslo: https://folk.universitetetioslo.no/josang/sl/Op.html
6Reproduced from Subjective Logic [2], Jøsang, pp.103, Fig 7.2

3

Figure 4: Binomial opinion multiplication6: P (x ∧ y) = P (x) · P (y) = 0.8 · 0.28 = 0.22

Figure 5: K = 2 of N = 3 reliability network: (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z)

4

This particular technique does not scale particularly well, as large networks will expand terms quickly.
Each combination must be represented, creating

(
K
N

)
parallel paths. Automated tools would be better

suited to this task than manual expansions.

1. Josang A, Hayward R, Pope S. Trust network analysis with subjective logic. Conference Proceedings
of the Twenty-Ninth Australasian Computer Science Conference (ACSW 2006). Australian Computer
Society, 2006, 85–94.

2. Jøsang A. Subjective Logic. Springer, 2016.

5

Appendix E: Paralysis proofs detail
This appendix provides a brief overview of paralysis proofs, a technique for managing group control of an
asset in the absence of one member:

• In the absence of a member, the group may initiate transfer of control to the remaining subset of
members by issuing a challenge.

• The absent member may respond to the challenge, preventing further changes to the control of the
asset.

• If they do not respond within a specified period, the asset is transferred to an account controlled by
the remaining subset of the group.

In Paralysis Proofs: Secure Dynamic Access Structures for Cryptocurrency Custody and More [1], Zhang,
Daian and Bentov describe paralysis proofs as a process by which a group may hand a fund to an account
controlled by a smart contract or SGX enclave.

In doing so, this entity is treated as a trusted but constrained 3rd party. Smart contracts and SGX
enclaves will execute the code they were set up with (as agreed by all parties) reliably, and this property
distinguishes such a solution from simply holding the funds in escrow with a regular 3rd party. This
explanation refers to the constrained 3rd party as SGX.

Paralysis Proofs exploit properties of blockchain based cryptocurrencies to ensure that the funds can only
be passed to the remaining parties in the complete absence of the missing party.

In the following example, the group comprises 3 members:

• First the full fund is placed in UTXO0, only able to be spent with the signatures of all 3 members
together or by the SGX.

• One member of the group is determined to be missing by the remaining parties.
• The remaining parties issue a challenge, and the SGX prepares 2 transactions:

– t1: a trivial amount to be transferred to UTXO1, which can be spent either by the missing
party, or by the SGX provided X blocks have passed since its release to the blockchain. This is
referred to as a life signal.

– t2: the transfer of UTXO0 and UTXO1 to a new location controlled by the remaining parties.

Figure 1: Paralysis proof: t2 relies on UTXO0 and UTXO1

Principle: t2 relies on UTXO0 and UTXO1, so cannot resolve until t1 has been resolved.

In order to gain control of the funds, the remaining parties must release t1 to the cryptocurrency network,
wait until it has been added to the blockchain, and then wait until an additional X blocks have been

1

added1. After that, they may release t2, which will allow them to transfer the funds into a location they
control.

However, during that time, t1 also created UTXO1 (the life signal). If it is spent by the missing party,
then it can no longer serve as input to t2 - and t2 will fail, so preventing the transfer of funds away from
UTXO0.

This mechanism allows the individual to participate in a scheme that is attempting to determine whether
they are able to respond.

Some benefits:

• Cryptocurrencies are popular and rely on distributed networks.
• Smart contracts run on distributed systems (usually cryptocurrency blockchain verification networks)

and offer guarantees of execution. It becomes impossible to execute a denial of service attack on a
distributed system without attacking the majority of nodes (or exploiting another weakness of the
system that relies on it).

• SGX and smart contracts offer guarantees that the right code will be executed, and that only that
code may sign its outputs with its given identity (so allowing third parties to verify that it ran
correctly).

1. Zhang F, Daian P, Bentov I et al. Paralysis proofs: Secure dynamic access structures for cryptocurrency
custody and more. AFT 2019 - Proceedings of the 1st ACM Conference on Advances in Financial
Technologies 2019:1–5.

1This is considered a proxy for the passage of time, as cryptocurrency network blockchains grow at a steady rate.

2

Appendix F: Trusted computing detail
This appendix provides some additional detail for trusted computing.

Computing systems are built in layers, from the hardware, CPU, through BIOS, operating system, and
applications - as shown in figure 1.

Figure 1: Hardware and operating system layers in an Intel CPU

Efforts to protect software from exploitation, by closing vulnerabilities, have incentivised attacks on
“layers below” - as software must trust that the lower layers are behaving correctly in order to know
anything. Trusted Computing considers all layers from the bottom up - including system hardware.

Trusted Platform Module (TPM)
Attestation is a process by which layers are measured and validated - determining if the system is in
a known state - essential for a secure boot process. The Trusted Platform Module (TPM) initiates
measurement of the first layer in the boot process, and provides the capability to reliably measure
subsequent layers.

If all is working as it should, a Trusted Computing system offers the guarantee that a user can know with
certainty that:

• The software running is the intended software.
• The layers below it - the Operating System, BIOS, and underlying CPU are also running the

intended code (or microcode).

Described by Andrew Martin [1], the TPM provides a number of components to support a secure
(measured, or verified) boot process - including the Root of Trust for Measurement (RTM).

• A “measured boot process” builds a chain of trust from the RTM, by measuring each layer in the
sequence before executing it.

• An “authenticated boot process” also verifies each measurement before proceeding - so allowing the
system to abort if it has been altered.

1. At power on (“platform reset”) the RTM records its own identity.
2. The RTM takes a hash of the next component to execute, stores that value in a safe place1, and

transfers control to it.
3. This is repeated until the operating system has been executed.

A static RTM measures the entire boot chain. However, this is complicated and the chain has many
elements:

1Platform Configuration Registers (PCR) inside the TPM. These are special and have only 1 operation: extend.

1

• Patching means new expected values need to be managed.
• Sometimes the order of execution at boot changes.
• Performance may be impacted as there are a lot of things to measure, and this must all happen at

once.

A dynamic RTM provides a special CPU instruction. On execution, a fixed piece of code is used to
measure and launch a nominated piece of software. This significantly simplifies the process - and still
permits a hardware measurement of each piece of software - so providing a similar guarantee of integrity.

As Martin notes [1]:

“any program, at any point in the chain, can gain confidence in (i) its own integrity, and (ii)
the integrity of the components it relies upon, by comparing the stored values with the ones
it was expecting”

TPMs, previously a hardware feature for enterprise computing, are now built into consumer PCs and
required by Windows 11. The assurances provided by a TPM could help to build confidence in DPS
solution code running on such a system.

However, reliance on a TPM also comes with a number of risks:

• The implementation can be complex. ie. The chains can be long and software/firmware is often
updated (and this is why dynamic root of trust for measurement is sometimes preferred).

• Trusted computing, even when behaving fully correctly, could still be exploited. ie. A piece of
software can have full integrity, but may still be manipulated through malicious inputs to give
undefined/unwanted behaviours.

• It’s hard to know if a remote machine is tainted or not, as a hardware attack with sufficient resources
could compromise it.

• Many national import/export controls require that the TPM exposes only asymmetric encryption
capabilities.

• Drawbacks for law enforcement (these are the same objections seen with all privacy protecting
technologies). The TPM specification requires that there be no back door into devices.

– The tussle between privacy technologies and law enforcement continues today - and the
arguments in 2015 paper Keys Under Doormats [2] are just as strong now as they were at time
of writing.

• Vulnerabilities, once discovered, require manual intervention to patch.
– For example, ROCA (CVE-2017-15361) [3] was a vulnerability found in Infineon TPM 1.2

chips in 2017, that used a weak process to generate RSA keys.
– This impacted the Estonian digital ID system at the time - which quickly led them to move to

a new infrastructure with fresh keys.
– NCSC have published information [4] about how to determine if a PC is vulnerable to ROCA,

and how to patch it if it is. Patching like this relies on awareness and engagement from
hardware owners.

SGX
Trusted Execution Environments offer opportunities to run code and work with memory that is protected
from other code running on the system. Code running in a TEE is expected to behave correctly and to
retain its secrets, even if the operating system, and all other software on the system, is compromised.

To achieve this, SGX (available on many Intel CPUs) provides a number of hardware capabilities:

• Memory pages are reserved from the system’s physical RAM, and encrypted. These are not
addressable from the operating system2.

• Enclaves are protected memory regions where an application can store code and secrets.
• SGX applications are divided into untrusted code (normal application code), and trusted code -

which is granted access to the enclave, and is expected to process application secrets.
• When an application creates an enclave and calls a trusted function inside it, the CPU switches to

a special mode and during this time no other processes can run.
• This gives the trusted part of the application plaintext access to the memory it needs to run without

fear of exposure.
2In fact, attempts to access these pages are denied, even from privileged system code, the OS, VMM, BIOS, SMM, etc.

2

Working with SGX is not without risk. In SGX Explained, 2016, [5], Costan and Devadas review existing
literature around SGX and its implementation - offering a warning that SGX does not seem to be (at the
time of writing) an appropriate tool for managing trusted enclaves.

“our security analysis reveals that the limitations in SGX’s guarantees mean that a security
conscious software developer cannot in good conscience rely on SGX for secure remote
computation”

At time of writing it is 2021, and a lot can happen in 5 years, but it’s worth noting that any solution that
exploits SGX for its security properties may also need to provide a fallback capability when running on
machines that cannot provide SGX hardware.

• Such a system is still vulnerable to denial of service attacks - and DPS systems are particularly
sensitive to loss of availability.

• Networks of machines operating SGX or other TEE can mitigate this to some degree, but to
participate in the network requires SGX support. (This is improving as new chips roll out, but
if there’s a vulnerability in a legacy SGX implementation that then can exclude a proportion of
participants.)

• SGX support is more common now amongst Intel CPUs.
• Software and data in SGX is inaccessible to malware scanning applications - which means that

malicious inputs might still be able to exact an unplanned behaviour from the software (eg. an
image processing enclave could be attacked with an image that contains an exploit for the processing
code). If this happens, it may still be possible to persuade an SGX enclave to leak data or perform
undesirable operations.

1. Martin A. The ten-page introduction to trusted computing. 2008.

2. Abelson H, Anderson R, Bellovin SM et al. Keys under doormats: Mandating insecurity by requiring
government access to all data and communications. Journal of Cybersecurity 2015;1:69–79.

3. Nemec M, Sys M, Svenda P et al. The Return of Coppersmith’s Attack: Practical Factorization of
Widely Used RSA Moduli. 24th ACM Conference on Computer and Communications Security (CCS’2017).
ACM, 2017, 1631–48.

4. ROCA: Infineon TPM and secure element RSA vulnerability guidance. 2017. https://www.ncsc.gov.u
k/guidance/roca-infineon-tpm-and-secure-element-rsa-vulnerability-guidance

5. Costan V, Devadas S. Intel sgx explained. IACR Cryptol ePrint Arch 2016;2016:1–18.

3

https://www.ncsc.gov.uk/guidance/roca-infineon-tpm-and-secure-element-rsa-vulnerability-guidance
https://www.ncsc.gov.uk/guidance/roca-infineon-tpm-and-secure-element-rsa-vulnerability-guidance

G-design-and-risk-tables README

1

Appendix G - design and risk tables

This appendix presents tables used in the design and risk analysis process for a DPS including:

* the derived requirements for a DPS (Table 01),
* the stakeholders for a DPS (Table 02),
* the generic components of a DPS (Table 03),
* assets, impact, and threat actor tables for a generic DPS (Tables 04-06), in the context of investigative journalism, and
* the tables supporting a full risk analysis process applied to the micro-services solutions proposed in the thesis body (Tables 07-13).

List of tables

01 - Requirements Reasoned requirements for a DPS.
02 - Stakeholders Stakeholders in a generic DPS system.
03 - Generic components Generic components of a DPS.
04 - Generic assets Generic informational assets protected by a DPS.
05 - Generic impact Impact of loss of CIA properties of informational assets.
06 - Threat actors Threat actors for a generic DPS in an investigative journalism DPS scenario.
07 - Combination tables Combination tables used for risk assessment scoring.
08 - Additional assets and impacts Assets and impacts of loss in micro-services design.
09 - Vulnerabilities Vulnerabilities identified in micro-services design.
10 - Threats Threats to the micro-services design.
11 - Risks Risks to the micro-services design.
12 - Responses Responses to risks in micro-services design.
13 - Controls Controls recommended for the micro-services design.
14 - Scored evaluations Evaluations of each proposed design scored against the requirements for a DPS established in the thesis.

G-design-and-risk-tables 01 - requirements

2

Appendix G Table 01 - requirements for a DPS
Requirement Description
Confidentiality A DPS must keep a user's secret confidential until it determines it is appropriate to release the secret.
Awareness A DPS must have a mechanism to check the subject's well-being, and a method to release the secret if the subject fails this

test.
Timing A DPS should not release the subject's secret early (ie. whilst they are still alive and well), late (ie. too long after the subject has

become unresponsive), or never.
Resilience A DPS must assume the existence of, and protect against, attempts by hostile threats to compromise the secret's confidentiality

and integrity, and be resilient against attacks intended to compromise its availability.
Affordability A DPS should use affordable technologies to provide its functionality, not relying on resources beyond the means of the target

subject group.
Durability A DPS should be expected to remain operational for a significant amount of time (eg. the lifetime of a subject), with continued

maintenance (including security patches), support, or upgrade pathways if the technologies in use become obsolete.
Explainability A DPS must be presentable as a model that the target subject group can understand and trust.
Visibility A DPS must be able to present evidence that it is operational, to contribute to a deterrent effect.

G-design-and-risk-tables 02 - stakeholders

3

Appendix G Table 02 - stakeholders for a generic DPS
Actor Role
Subject Owner of a specific DPS. Inputs the initial secret, provides evidence of own well-being. Depends on a reliable

release of the secret if they are not. Depends on the reliability of the DPS. Incentivised to protect their own safety,
and to take steps to ensure the reliability of the DPS.

Operator Owner of the DPS system itself, incentivised in some way to manage the resilience of the various components in
the system.

Platform provider Owner of the hardware and infrastructure that the DPS system operates on. Incentivised to provide a reliable
operating system and hardware on which the DPS system can run.

Participant (Optional. Required by some designs.) Member of a group tasked with determination of the state of the subject's
well-being. Incentivised to protect their own safety, and the safety of the subject. Motivated towards appropriate
behaviour in some way (eg. through loyalty to the subject, or a reward scheme).

G-design-and-risk-tables 03 - components

4

Appendix G Table 03 - components of a generic DPS
Component Role
Initialiser Component that handles the secret initially provided by the Subject. Arranges safe communication and

storage of the secret, and establishes a method for the DPS to check the well-being of the subject.
Secret store Component that stores the subject's secret in such a way that it can be extracted only when the right

conditions are met.
Aliveness checker Component that can monitor evidence of the subject's well-being, and is able to suppress the secret extractor

if the subject is alive and well (or activate it if not).
Secret extractor Component that can retrieve the secret from the secret store, and publish it to the publishing medium.
Publishing medium Either a public medium where the secret can be published, or direct communication of the secret to specific

recipients.

G-design-and-risk-tables 04 - generic assets

5

Appendix G Table 04 - assets for a generic DPS
Asset Name Description
A001 Subject identity A representation of the identity of the subject, used to evaluate the evidence of well-being

presented, to ensure it matches the identity of the user that owns the DPS.
A002 Secret Representation of the subject's secret. Stored and protected by the secret store.
A003 Secret extraction information Information that may be used to extract the secret - eg. a decryption key.
A004 Operational information Additional information relating to the operation of the DPS - eg. a period for recurring

aliveness checks, chosen behaviour should the checks fail (eg. a cooling-off period before
activating the secret extractor, and information about the Publishing medium).

G-design-and-risk-tables 05 - generic impact

6

Appendix G Table 05 - impact of loss for generic DPS assets
Asset Asset name CIA Impact Level
A001 Subject identity C Loss of confidentiality of the subject's identity may represent a risk, as the

subject may have chosen not to reveal the details of their switch (or how to
locate it), to prevent it becoming an attack surface. However, to act as a
deterrent, the existence of a switch must be declared - and so the positive angle
is that this information may constitute evidence that the switch is operational.

Medium

A001 Subject identity IA The subject identity is essential for determining the well-being of the subject. If
this is altered or made unavailable, the switch will not have enough information
to determine the state of the subject. In this case, it must follow the safest
course of action. This is not a trivial decision.

High

A002 Secret C Loss of confidentiality of the secret held in the switch itself can have a high
impact. If the secret is released early, it can no longer be used as a disincentive
to physical attack. It may also inform the attacker just how much (or how little)
impact the secret could have, or may allow them to put mitigations in place to
plan for the secret's publication. These all weaken the switch as a protective
measure.

High

A002 Secret IA Alteration or deletion of the secret is a powerful attack and this grants an
attacker the ability to 'defuse' the switch entirely, removing its disincentive to
physical attack, and rendering it useless.

High

A003 Secret extraction information CIA Confidentiality, Integrity, Availability | The information required to extract the
secret from the switch should remain entirely under the control of the switch. If
this information becomes known, it offers insights into the secret itself (see the
impact of loss of confidentiality for the secret). If it can be tampered with, it
directly affects the availability of the secret too. If the switch loses the ability to
extract and publish the secret it holds, it is rendered useless.

High

A004 Operational information C Operational information, such as the frequency and chosen publishing details of
the switch are of some value to an attacker. They show the intended frequency
of aliveness checks, and details of the recipients (or medium of publication). In
turn, this information could be used to improve the quality of an attack against
the switch, subject, or recipients - increasing the risk that individuals involved
will be attacked, or the switch disabled. However, as with the subject identity,
releasing information to the effect that the switch is operational may contribute
to the switch's deterrent effect.

Medium

A004 Operational information IA Ability to alter or remove the operational information could render the switch
inoperable (or impractical - for instance, if the period for aliveness checks were
increased beyond a desirable limit).

High

G-design-and-risk-tables 06 - threat actors

7

Appendix G Table 06 - threat actors for a DPS (investigative journalism)
Threat actor Description Capability
Nation state
(extra-legal means)

Nation states and their intelligence agencies are considered to have limitless resources with which
to attack systems - making 0-day vulnerabilities, and expensive physical or social engineering
attacks available.

Very High

Nation state
(legal means)

Nation states may choose to subject the operators or platform providers of DPS services to legal
pressure to halt their service or reveal stored secrets.

Very High

Organised crime OC gangs may have various motivations for attacking a switch - either to prevent information about
themselves being released, or to cause the release of information about their own adversaries.
Criminals may also act unpredictably, displaying behaviours such as revenge.

High

Activists Some activists may not approve of practises that withhold incriminating information for any reason.
They may perceive it as cowardly, irresponsible, or even blackmail. To uncover and release this
information, activists may use technical or social engineering attacks. Activism is not believed to be
as well funded as organised crime or national security organisations.

Medium

Law enforcement Considered separate from nation states, law enforcement bodies that perceive DPS activity as
blackmail (or another activity at odds with the law) may attempt to shut down such systems, or
arrest those operating it. Some law enforcement bodies have a limited range of legal activities that
they can engage in, or may be called upon to enforce decisions made by local justice systems.

Medium

Script kiddies A high volume threat on the internet, script kiddies are people who, for reasons such as boredom,
curiosity, or malice, continuously test endpoints for vulnerabilities (without much thought to the
nature of the endpoint) - exploiting them when found.

Low

G-design-and-risk-tables 07 - combination tables

8

Appendix G, Table 07 - risk analysis combination tables

Likelihood of
success

Capability Threat
level

Frequency of
attempt

Risk
level

Impact Risk
priority

Impact

L M H L M H L M H L M H
Vulnerability
level

L L L M Likelihood
of success

L L L M Threat
level

L L L M Threat
level

L 9 7 4
M L M H M L M H M L M H M 8 5 2
H M H H H M H H H M H H H 6 3 1

G-design-and-risk-tables 08 - additional assets and impacts

9

Appendix G Table 08 - additional assets and impacts, micro-services design
Asset Name Description CIA Impact Level
A005 Architecture Data controlling the design of the system,

creation of micro-services, databases, trust
zones, rules for permitted connections
between micro-services.

I If altered, the system's behaviour could be adjusted, resulting
in the loss of confidentiality of subject secrets, or loss of
availability of the system.

H

A006 Administration
account

Account and credentials required to
construct or modify system architecture.

C If confidentiality of the credentials is compromised, any
attacker can alter the system's architecture and change any
part of its behaviour.

H

A006 Administration
account

Account and credentials required to
construct or modify system architecture.

IA If access to the account is lost (ie. if the bill cannot be paid, the
credentials are modified without knowledge of the operator, or
the cloud hosting provider prevents access for some other
reason), either: 1. the service will be shut down (in which case,
switches become unavailable), or 2. it becomes difficult to
patch or update the service. Eventually exploits will be found
that can be used to attack it.

H

A007 DMZ services,
input zone
services, data
zone services

Web services in the DMZ responsible for
creating new switches, and for accepting
evidence of subject aliveness; services in
the input zone that coordinate creation of
switches and recording of subject
aliveness evidence; services in the data
zone that store operational and secret
data, and share it with the check zone.

IA If services in any of these zones are compromised, it may be
possible to alter the behaviour of the service - either to make it
unavailable, or to reject user input. It may also be possible for
a compromised service to record the user's credentials and
use them to play back false aliveness evidence at a later date.

H

A008 Subject
aliveness
evidence secret

A secret that the subject shares with their
aliveness assertion.

C If this becomes known, an attacker may use it to submit false
aliveness evidence.

H

A009 Data zone
services

Services in the data zone that store
operational and secret data, and share it
with the check zone.

C If the data in the secret store is released, it will be encrypted
with a key retained in the HSM, and so of little use to an
attacker. However, operational information (pseudonyms and
data used to verify aliveness information) may be uncovered
and this could be used to manipulate the switch into accepting
false aliveness information.

M

A010 HSM The HSM in the data zone contains keys
required to decrypt subject secrets.

C=A If the HSM is compromised it is expected to render itself
inoperable. This results in user secrets becoming unavailable.
If this can be detected, users will be forced to resubmit their
secrets in order to restore operation.

M

G-design-and-risk-tables 08 - additional assets and impacts

10

A011 Check zone
services

Services in the check zone responsible for
checking aliveness, extracting secrets, and
publishing if necessary.

IA If the secret extractor is compromised, it could lead to loss of
confidentiality of the user's secret. If either service is altered or
disabled, it could lead to the service becoming unable to carry
out secret extraction and publishing if the subject becomes
unavailable.

H

A012 Operator The person or persons that operate the
system

IA If the operator is attacked or compromised in some way, the
could be persuaded to release secrets permitting an attacker
to take control of the system, learn subject secrets, or shut
down the service.

H

G-design-and-risk-tables 09 - vulnerabilities

11

Appendix G Table 09 - vulnerabilities, micro-services design
Vuln ID Vulnerability Assets affected Description Vuln level
V001 Human weakness A012 (operator) Staff at the cloud platform provider, or the operator, may be

vulnerable to bribery, threat, or disgruntled staff may act on
malice. Humans are vulnerable to duress, and also make
mistakes like having guessable passwords.

M

V002 Configuration errors A005 (architecture),
A007 (services),
A009 (services),
A010 (HSM),
A011 (services)

Mistakes or deliberate errors in the configuration for security
appliances (such as the firewall), any backups, micro-services or
the HSM.

M

V003 Coding flaws A007 (services),
A009 (services),
A011 (services)

Weaknesses in the micro-services themselves. M

V004 Unpatched software
vulnerabilities

A007 (services),
A009 (services),
A010 (HSM),
A011 (services)

Managed micro-services are considered to be at low risk from
OS patching. However, the micro-services themselves will need
regular patching as new vulnerabilities are discovered.

M

V005 Default passwords A006 (admin acct),
A010 (HSM)

Accounts used to manage infrastructure with default passwords. H

V006 Physical vulnerability of data
centre

A005 (architecture),
A007 (services),
A009 (services),
A010 (HSM),
A011 (services)

The data centres administered by large cloud providers are
considered to have adequate security in place to ensure only
authorised staff may enter for good reasons.

L

V007 Capacity limits of architecture A007 (services) It may be possible to overwhelm the service's public facing
endpoints.

M

V008 Legal compulsion A012 (operator) Staff at the cloud platform provider, or the operator, are more
likely to choose cooperation with a legal request over a hefty fine
or a custodial sentence.

H

G-design-and-risk-tables 10 - threats

12

Appendix G Table 10 - threats, micro-services design
Threat ID Threat Actor Motive Cap. Target Assets Method Freq. Notes
T001 Denial of service Nation state (extra-

legal means)
Prevent the service from
operating, to protect their
own secrets

H A007 (services) Overwhelm the front-end services
with requests.

L Considered Low frequency in some
democracies, but far higher (or even
automatic) in some countries.

T002 Denial of service Organised crime Prevent the service from
operating, to protect their
own secrets

H A007 (services) Overwhelm the front-end services
with requests.

L This may be considered infrequent, as
organised crime are likely to have one-off
reasons for doing this.

T003 Denial of service Activists Prevent the service from
operating because it is
perceived as unethical to
withhold evidence of
wrongdoing

M A007 (services) Overwhelm the front-end services
with requests.

M This could form a part of an ongoing
campaign if activists are sufficiently
motivated.

T004 Exfiltrate secrets Nation state (extra-
legal means)

Learn secrets stored by
dissidents or investigative
journalists investigating
government wrongdoing

H A001-A004 (information),
A009 (data zone),
A011 (check zone),
A012 (operator),
A006 (admin acct)

Capture and decrypt information
held in the secret store: either
through learning or guessing the
administrator credentials, by
obtaining the administrator
credentials through duress, or by
exploiting vulnerabilities in the
micro-services.

M This is an attractive target for an intelligence
agency that wishes to control dissidents and
investigative journalists.

T005 Exfiltrate secrets Organised crime Learn secrets stored by
enemies or people they
wish to blackmail / Sell the
information or accept
payment not to release it

H A001-A004 (information),
A009 (data zone),
A011 (check zone),
A012 (operator),
A006 (admin acct)

Capture and decrypt information
held in the secret store: either
through learning or guessing the
administrator credentials, by
obtaining the administrator
credentials through duress, or by
exploiting vulnerabilities in the
micro-services.

L This may be considered infrequent, as
organised crime are likely to have one-off
reasons for doing this.

T006 Exfiltrate secrets Activists Embarrass the service,
and leak secrets because
it is perceived as unethical
to withhold evidence of
wrongdoing

M A001-A004 (information),
A009 (data zone),
A011 (check zone),
A006 (admin acct)

Capture and decrypt information
held in the secret store: either
through learning or guessing the
administrator credentials, or by
exploiting vulnerabilities in the
micro-services.

L Activists are considered to have limited
resources to do this repeatedly, and may not
need to - as the goal of reputational damage
to the service would be achieved if
sufficiently many subject's secrets were
compromised.

T007 Destroy secrets Nation state (extra-
legal means)

Prevent evidence of
government wrongdoing
from being released

H

A001-A004 (information),
A009 (data zone)

Delete information held in the
secret store: either through
learning or guessing the
administrator credentials, by
obtaining the administrator
credentials through duress, or by
exploiting vulnerabilities in the
micro-services.

L Considered Low frequency in some
democracies, but far higher (or even
automatic) in some countries with less regard
for rule of law.

G-design-and-risk-tables 10 - threats

13

T008 Destroy secrets Organised crime Prevent evidence of their
own wrongdoing from
being release, or make it
possible to attack an
enemy

H A001-A004 (information),
A009 (data zone)

Delete information held in the
secret store: either through
learning or guessing the
administrator credentials, by
obtaining the administrator
credentials through duress, or by
exploiting vulnerabilities in the
micro-services.

L This may be considered infrequent, as
organised crime are likely to have one-off
reasons for doing this.

T009 Destroy secrets Activists Prevent the service from
operating because it is
perceived as unethical to
withhold evidence of
wrongdoing

M A001-A004 (information),
A009 (data zone)

Delete information held in the
secret store: either through
learning or guessing the
administrator credentials, or by
exploiting vulnerabilities in the
micro-services.

L Activists are considered to have limited
resources to do this repeatedly, and may not
need to - as the goal of reputational damage
to the service would be achieved if
sufficiently many subject's secrets were
deleted.

T010 Install malware Nation state (extra-
legal means)

Make service inoperable,
with plausible deniability

H A007 (services) Exploit vulnerabilities in the micro-
services to install malware on the
various hosted services.

L This is difficult to do on a managed micro-
services infrastructure - and once done,
there would be little benefit to doing it again,
as the service would be disabled.

T011 Install malware Organised crime Exploit computation
resource to make some
money, or ransom back
the capability to operate

H A007 (services) Exploit vulnerabilities in the micro-
services to install malware on the
various hosted services.

M This is difficult to do on a managed micro-
services infrastructure, but organised crime
are incentivised to do it repeatedly if they
can.

T012 Install malware Script kiddies Excitement, reputation L A007 (services) Exploit vulnerabilities in the micro-
services to install malware on the
various hosted services.

M This is difficult to do on a managed micro-
services infrastructure, but persistent
attempts are to be expected by any service.

T013 Weaken secret
protections by
altering
architecture

Nation state (extra-
legal means)

Learn about future secrets
and users

H A005 (architecture),
A006 (admin acct)

Adjust the architecture to remove
protections for secrets, or install
additional accounts that can be
used to obtain secrets in future, by
learning or guessing the
administrator password (or
obtaining it through duress); or by
making imperceptible changes to
the architecture designs and
waiting for the operator to refresh
the system from this data.

L This activity can be detected, and is not
considered the easiest way to achieve the
same weakening of the service's secret
protections. However, it may serve a purpose
and could be quicker to implement than legal
compulsions.

T014 Weaken secret
protections by
mandating a
backdoor

Nation state (legal
means)

Learn about future secrets
and users

H A005 (architecture),
A006 (admin acct)

Take the operator or platform
service provider to court, or
threaten to, to incentivise them to
install a backdoor (ie. an additional
account), or alter the micro-
services, to make it possible for a
government body to obtain the
secrets stored in the DPS.

M Wide-reaching mass surveillance
programmes (such as Prism) have been
revealed in recent years. Data collection was
achieved by legal (and other) means. New
programmes would be equally hard to
discover. It is likely that major providers are
collaborating with law enforcement, or
intelligence agencies, to some degree.

G-design-and-risk-tables 10 - threats

14

T015 Weaken secret
protections by
altering
architecture

Organised crime Learn secrets stored by
enemies or people they
wish to blackmail / Sell the
information or accept
payment not to release it

H A005 (architecture),
A006 (admin acct)

Adjust the architecture to remove
protections for secrets, or install
additional accounts that can be
used to obtain secrets in future, by
learning or guessing the
administrator password (or
obtaining it through duress); or by
making imperceptible changes to
the architecture designs and
waiting for the operator to refresh
the system from this data.

L Organised crime may not care if their
changes are discovered provided they can
exploit them reasonably swiftly.

T016 Shut down
service with court
order

Nation state (legal
means)

Prevent use of the switch
for a variety of reasons

H A001-A004 (information),
A006 (admin acct),
A012 (operator)

Take the operator, or the cloud
platform provider, to court (or
threaten to) to incentivise them to
halt the account hosting the DPS.

L Shutting down the entire service seems less
useful to a nation state than exploiting it to
gather information.

T017 Fines for
switches used for
blackmail

Law enforcement Enforce blackmail
legislation

H A012 (operator) Take the operator, or the cloud
platform provider, to court for
alleged use of the DPS for
blackmail.

M This could happen. It's likely that individual
cases would be dealt with, ie. an individual
DPS might attract attention of law
enforcement, and the court case may require
only the removal of an individual switch.

T018 Fines or jail for
refusing to
release secrets

Law enforcement Support criminal
investigations, incentivise
release of secrets stored
by people engaged in
illegal activity

H A012 (operator) Threaten the operator with fines,
or a custodial sentence, to
incentivise them to release secrets
belonging to a person of interest.

L This is a more extreme case, where law
enforcement wish to learn the information
kept in the switch.

G-design-and-risk-tables 11 - risks

15

Appendix G Table 11 - risks, micro-services design
Risk ID Threat IDs Vuln IDs Asset IDs Risk Capability Vuln level Likelihood

of success
Freq. of
attempt

Threat
level

Impact Risk level Risk
priority

R001 T001,
T002,
T003

V007 A007 DoS attack by overwhelming the
public facing endpoints.

H M H L M M M 5

R002 T004,
T005,
T007,
T008

V001,
V002,
V005

A001-A004,
A006

Exfiltrate or destroy secrets by
guessing or learning the
administrator credentials.

H H H M H H H 1

R003 T004,
T005,
T007,
T008

V002,
V003,
V004

A001-A004,
A009,
A011

Exfiltrate or destroy secrets by
exploiting vulnerabilities in the
micro-services.

H M H M H H H 1

R004 T004,
T005,
T006,
T007,
T008,
T009

V001 A001-A004,
A012

Exfiltrate or destroy secrets by
learning the administrator
credentials through duress.

H M H M H H H 1

R005 T010,
T011,
T012

V002,
V003,
V004

A007 Install malware by exploiting
vulnerabilities in the micro-
services.

H M H M H H H 1

R006 T013,
T015

V002,
V003

A005 Adjust the architecture to remove
protections for secrets by making
imperceptible changes to the
architecture files and waiting for
the operator to refresh the
infrastructure.

H M H L M M M 5

R007 T013,
T015

V001,
V005

A005,
A006

Adjust the architecture to remove
protections for secrets by learning
or guessing the administrator
credentials.

H H H L M M M 5

R008 T013,
T015

V001,
V005

A005,
A006,
A012

Adjust the architecture to remove
protections for secrets by learning
the administrator credentials
through duress.

H H H L M M M 5

R009 T014 V008 A005,
A006

Weaken secret protections by
mandating a back door through
legal means.

H H H M H M H 2

R010 T016 V008 A001-A004,
A006,
A012

Shut down the service by
threatening the operator with court
(or taking them to court and
threatening them with a file or
custodial sentence).

H H H L M H H 1

G-design-and-risk-tables 11 - risks

16

R011 T017,
T018

V008 A001-A004,
A006,
A012

Shut down an individual subject's
switch by taking the operator or
cloud platform provider to court for
aiding blackmail, or other
legislation in criminal
investigations.

H H H M H L M 7

G-design-and-risk-tables 12 - responses

17

Appendix G Table 12 - responses, micro-services design
Risk ID Risk Risk level Risk

priority

Av
oi

d

A
cc

ep
t

Tr
an

sf
er

R
ed

uc
e

R001 DoS attack by overwhelming the public facing endpoints. M 5
R002 Exfiltrate or destroy secrets by guessing or learning the administrator credentials. H 1
R003 Exfiltrate or destroy secrets by exploiting vulnerabilities in the micro-services. H 1
R004 Exfiltrate or destroy secrets by learning the administrator credentials through duress. H 1
R008 Install malware by exploiting vulnerabilities in the micro-services. H 1

R009

Adjust the architecture to remove protections for secrets by making imperceptible
changes to the architecture files and waiting for the operator to refresh the
infrastructure. M 5

R010
Adjust the architecture to remove protections for secrets by learning or guessing the
administrator credentials. M 5

R011
Adjust the architecture to remove protections for secrets by learning the administrator
credentials through duress. M 5

R012 Weaken secret protections by mandating a back door through legal means. H 2

R013
Shut down the service by threatening the operator with court (or taking them to court
and threatening them with a file or custodial sentence). H 1

R014
Shut down an individual subject's switch by taking the operator or cloud platform
provider to court for aiding blackmail, or other legislation in criminal investigations. M 7

G-design-and-risk-tables 13 - controls

18

Appendix G Table 13 - controls, micro-services design
Risk ID Risk Control ID Control Strategy Tactic Operational Cost Use Justification
R001 DoS attack by overwhelming the

public facing endpoints.
C001 Implement load balancing and DoS

resilience with a service such as
cloudflare.

Reduce Correct Technical M This is an accepted method of
developing resilience to DoS attack.

R002 Exfiltrate or destroy secrets by
guessing or learning the
administrator credentials.

C002 Implement strong password
requirements.

Reduce Correct Technical L This makes it much harder to guess an
account.

C003 Require 2FA for all accounts. Reduce Correct Technical L This makes it much harder to
compromise an account remotely, even
if the password is guessable.

C004 Implement a backup regime. Reduce Correct Technical,
Procedural

L Being able to restore state quickly in the
event of loss is good - although worth
recognising that the backups represent
an increased attack surface.

R003 Exfiltrate or destroy secrets by
exploiting vulnerabilities in the
micro-services.

C005 Implement code reviews, testing
policies, and regularly apply
dependency analysis to code. Regular
pen-testing.

Reduce Correct Procedural L This is a very affordable way to improve
code quality and catch vulnerabilities
(especially in 3rd party libraries) as soon
as possible.

C006 Apply monitoring software for
unexpected activity

Reduce Detect Technical M It's important to understand when the
service has been compromised, even if
the damage is irreversible it informs
future solutions and allows the service
to warn the users.

R004 Exfiltrate or destroy secrets by
learning the administrator
credentials through duress.

C007 Hire bodyguards for all operator staff. Reduce Correct Physical H This is considered too expensive for
staff. Other means can reduce the risk
sufficiently.

C008 Rent an office that provides physical
security guards. Add personal safety
training, and subsidise home security
equipment.

Reduce Correct Physical M This is an accepted method of
increasing personal security for staff.

R008 Install malware by exploiting
vulnerabilities in the micro-
services.

C009 As controls for R003

R009 Adjust the architecture to remove
protections for secrets by making
imperceptible changes to the
architecture files and waiting for
the operator to refresh the
infrastructure.

C010 Engage the development team to
regularly review the code for
unexpected changes.

Reduce Detect Technical L This is a very affordable way to detect
these changes.

R010 Adjust the architecture to remove
protections for secrets by learning
or guessing the administrator
credentials.

C011 As controls for R002

R011 Adjust the architecture to remove
protections for secrets by learning
the administrator credentials
through duress.

C012 As controls for R004

G-design-and-risk-tables 13 - controls

19

R012 Weaken secret protections by
mandating a back door through
legal means.

C013 Rely on a cloud service provider that
operates in a country less likely to
mandate this.

Reduce Prevent Procedural M Careful selection of physical location for
the service can lead to a far safer
experience.

R013 Shut down the service by
threatening the operator with court
(or taking them to court and
threatening them with a fine or
custodial sentence).

C014 Rely on a cloud service provider that
operates in a country less likely to
mandate this.

Reduce Prevent Procedural M Careful selection of physical location for
the service can lead to a far safer
experience.

R014 Shut down an individual subject's
switch by taking the operator or
cloud platform provider to court for
aiding blackmail, or other
legislation in criminal
investigations.

C015 Accept this risk. Accept Directive Procedural L Acknowledge that this is not the ideal
experience for an individual user, but in
order to keep the service running it's
necessary.

C016 Contend the request in court to ensure
that there's a good reason for this.

Reduce Correct Procedural L Many countries to allow a degree of
legal recourse to ensure that power
such as this is not abused.

C017 Distribute keys across multiple
jurisdictions

Reduce Prevent Procedural M Whilst expensive, designing the service
to use multiple keys distributed across
multiple jurisdictions makes it much
harder to compel the service to release
keys held under any one legal
requirement. This increases resilience
against legal compulsions.

G-design-and-risk-tables 14 - scored evaluations

20

Appendix G Table 14 - scored evaluations proposed designs, contrasted with existing systems
Type Solution Confidentiality Awareness Timing Resilience Affordability Durability Explainability Visibility
Hosted DeadMansSwitch 1 2 2 1 3 1 1 0
Hosted DeadMan 1 2 3 1 3 0 1 0
Hosted DeadManTracker 2 2 3 2 3 3 2 0
Hosted Letters Cloud 2 2 2 2 3 0 1 0
dApp KillCord 2 3 3 2 3 3 2 2
dApp Kimono 3 0 3 2 3 3 2 2
dApp SilentDelivery 3 0 3 3 3 3 2 2
OSS skickar/DeadManSwitch 1 1 2 1 3 1 2 0
OSS h313/dead-mans-switch 0 1 2 1 3 1 2 0
dApp deadmenswitch/dms 1 3 2 1 3 3 2 1
OSS EsmailELBoBDev2/Dead-man-s-switch 0 1 2 0 3 1 2 0
OSS dmp1ce/DMSS 2 0 2 2 3 2 2 0
Proposed #1 Microservices architecture design 2 2 3 2 3 3 3 0
Proposed #2 Distributed application 3 3 3 3 3 3 2 3
Proposed #3 Application of witness encryption 3 3 3 3 3 3 1 3

Scoring 0 Does not meet requirement, or no information available.
1 Shows awareness of the requirement, with significant room for improvement.
2 Partially meets the requirement, with some room for improvement.
3 Meets the requirement comprehensively, with little or no room for improvement.

